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While pedestrian-oriented urban places have been identified as beneficial in a number of

fields, including public health and climate change, there is a shortage of quantitative stud-

ies of such places covering large geographic areas. This study characterizes neighborhoods
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the American Community Survey, Longitudinal Employer-Household Dynamics Origin-

Destination Employment Statistics, National Land Cover Database, and OpenStreetMaps

datasets. Neighborhoods and metropolitan areas as a whole are typologized based on this

data using k-means analysis. The resulting neighborhood and metro area types are an-
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results for public transportation are discussed, and it is shown that transit commute share
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Preface

Like the majority of Americans of my generation, I was raised a child of car-oriented

suburbia. With the exception of a couple of friends’ houses and occasional trips to the

library when I couldn’t convince my parents to drive me, I never traveled anywhere on

foot, and I only rode public transportation a few times a year, when my mom and I took

the Washington Metro downtown to see the Smithsonian museums.

My only real experience with walkable urbanism as a child, perhaps surprisingly,

was in Detroit. Several times a year, my family traveled to Hamtramck, Michigan, a street-

car suburb that forms an enclave surrounded by Detroit, to visit my grandparents in the

house where my mother grew up. While I enjoyed walking to the bakery to get pumper-

nickel bread and to small grocery stores to buy pierogi and gołąbki, the experience never

really felt like “real life.” Instead, I filed this sort of walkable urbanism in my brain as an

exotic and somewhat outdated way of life, as unrelated to my everyday existence as my

mother’s stories of growing up in Hamtramck and helping out in her father’s store were.

However, while my childhood in Prince George’s County, Maryland was thoroughly

car-oriented, I spent the ten years after I graduated high school living without a car in

much more urban environments. My four years living without a car in Los Angeles while

I was an undergraduate at Caltech were my first real experience with urban living, though

Caltech’s Pasadena, California campus is really a border condition between urban and

suburban living. This was enough to make me realize that I wanted to go to graduate

school somewhere walkable and with good public transportation if at all possible.
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My next six years, pursuing a PhD in physical chemistry at MIT and living in Boston

really cemented my love of public transportation and vital, urban places. Life in Boston,

along with travel to visit college friends in a large number of American cities helped me

develop an intuitive sense of how urban life and public transportation worked, a sense that

I began to supplement with reading on these topics.

By the time I left MIT with a Master’s degree, I was more interested in transit and

urbanism in chemistry but, as I returned home to Prince George’s County, I pursued a

career teaching chemistry because it was, after all, what I was qualified for. It was only

thanks to Les Henderson’s efforts to get me involved in running Prince George’s Advocates

for Community-Based Transit (PG-ACT) and then Dan Reed, David Alpert, and Jonathan

Neeley’s efforts to get me involved in writing for Greater Greater Washington that I real-

ized that I had something to contribute to conversations about transportation and the built

environment. And it was only thanks to Dan Reed and Tracy Hadden Loh’s efforts to con-

vince me to take advantage of free tuition as a visting lecturer in the chemistry department

to start taking geography classes at UMBC.

My path to this Master’s degree has been indirect and as much a result of accident as

intention, but I am very glad that it has brought me here. I have greatly enjoyed getting to

work on this project for the past year-and-a-half, and I hope that I will be able to continue

this research in the future.

D.W. Rowlands

16 April 2021

College Park, Maryland
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Chapter 1: Introduction

Cities are as old as history. Older, actually: the earliest written records date from

around 3200 BCE in Egypt, 2900 BCE in Mesopotamia, 1200 BCE in China, and 200 CE

in Mesoamerica (Trigger, 2003, Ch. 25), while the earliest cities date from around 3600

BCE in the Middle East, 2000 BCE in China, and 100 BCE inMesoamerica (Smith, 2002;

Trigger, 2003). Throughout nearly this five-thousand-year history, as the vast majority

of urban transportation was on foot, the scale and structure of cities was shaped by the

needs and convenience of pedestrians and they were largely made up of closely-packed

neighborhoods of a few hundred or few thousand residents (Talen, 2019, Ch. 1).

Today, however, most American cities have been completely reshaped into places

fundamentally hostile to people traveling on foot. Historic urban cores have been cut

apart by wide freeways; major roads have become wide barriers that pedestrians cross

at significant risk of death; and residential and commercial uses have become separated

enough that it is common to have to drive several miles to buy a gallon of milk.
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Traditional urban environments that would be recognizable to an American from

1900 have become rare outside of a few major cities. However, the goal of identifying and

classifying these environments is not only of interest to urban theorists interested in living

fossils of lost urban past: it has significant practical implications for other fields, and for

society as a whole.

Walkable, non-automobile-oriented urban spaces have been a subject of interest in

the urban planning field at least since Jane Jacobs valorized them in her 1961 classic The

Death and Life of Great American Cities (Jacobs, 2011). More recently, they have become

a matter of interest in the studies of public health, options for reducing greenhouse gas

emissions, and gentrification (Talen and Koschinsky, 2013, 2014).

Research into US urban form has generally consisted of two separate streams: one

localized and qualitative, and the other broad-brushed but quantitative. The former stream,

strongly associated with Jane Jacobs’ The Death and Life of Great American Cities (2011),

is based on case studies and on-the-ground observation of specific neighborhoods. While

this approach gives the best possible view of specific locales and is responsible for much

of our understanding of what it means for a place to be walkable and traditionally urban,

it requires a large time investment for each study site, and so makes broad comparisons

across metro areas and the identification of similar neighborhoods in different regions very

difficult.

The latter stream uses statistics and quantitative data—usually collected by govern-

ment agencies—to classify neighborhoods, cities, and metropolitan areas, usually in order

to understand how specific variables affect specific outcomes of concern. In order to create

a typology based on this approach—using largely-quantitative data collected across the US

2



and automated data analysis—that can identify walkable, amenable to public transporta-

tion, Jacobsian urban places, it is necessary to understand features of urban places that

the first stream of work has recognized as important. Only once such features have been

understood and quantified can they be analyzed using the techniques of the second stream.

While Jacobsian urban neighborhoods are commonly recognized as important, there

has been relatively little work done on identifying them consistently on a national scale.

No detailed, empirical, and automated typology of urban or suburban neighborhoods has

been developed with public data. While commercial tools such asWalk Score are available

for measuring walkability, they use proprietary algorithms and are not well-designed for

distinguishing between types of built environment (Goodyear, 2012).

This research aims to fill that gap by addressing three fundamental questions. First,

how can we build land-use typologies that center vital, walkable urban places? Entwined

in that question is a second, more fundamental, question: what properties make neighbor-

hoods andmetro areas vital and walkable? Finally, what can we learn from such typologies

about making cities more transit-friendly?

A consistent, national typology of urban places will have a number of potential uses.

From an academic standpoint, it can serve as a jumping-off point for studies of the geog-

raphy of socioeconomic phenomena in American cities by providing examples of similar

places for comparison. For planners and, in particular, transit planners, it will help provide

an understanding of where resources and initiatives may be most likely to be effective by

allowing more useful comparisons between different cities’ neighborhoods. And, from a

personal standpoint, it should provide a resource for people interested in cities and urban-

ism to help them find places in other metro areas similar to those they enjoy in their home
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metros. Likewise, a national typology of metro areas based on this typology of urban

places will provide a similar resource for recognizing similarities and bases for compari-

son between metro areas seen as wholes.

In this chapter, I will begin by discussing the factors that create walkable urban

places and attempts to systematically identify urban and suburban neighborhood types in

general (Section 1.1). I will then review the history of American urban centers in the

20th Century and how it has influenced the structure of American metro areas today (Sec-

tion 1.2) and consider several approaches that have been used to typologize metro areas

(Section 1.3).

Chapter 2 will present a new method for characterizing neighborhoods in US urban

places and the results of this method as applied to all 926 Core-Based Statistical Areas

(CBSAs) in the United States. In Chapter 3, I will use the neighborhood characteriza-

tions developed in Chapter 2 to typologize neighborhoods and the CBSAs themselves and

present some initial results following from this typologization. Finally, in Chapter 4, I

will review the literature on conditions that contribute to effective and equitable public

transportation and perform some initial analysis of the relationship between public trans-

portation ridership in major US metro areas and the types developed in Chapter 3.
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1.1 Urban Vitality and the Built Environment

Pedestrian- and transit-friendly urban environments are of interest to scholars study-

ing food access and public health because living and working in them may provide sig-

nificant health benefits. Work by scholars such as Widener and Shannon (2014) on the

temporality of food access shows potential benefits to neighborhoods where low-income

individuals—who tend to havemore constrained time-budgets—have access tomore needed

resources such as grocery stores near where they live, work, or go about other errands

without making separate trips.

Walkable urban neighborhoods, and environments that promote public transit and

active transportation modes, have repeatedly been shown to provide public health bene-

fits, in particular by increasing physical activity and leading to a larger share of the popula-

tion meeting physical activity recommendations, (Lachapelle and Frank, 2009; Lachapelle

et al., 2011; Freeland et al., 2013; Riggs and Gilderbloom, 2016). Public health benefits

have also been used to support the construction of improved transit infrastructure (Stokes

et al., 2008), although the effects depend strongly on a built environment that supports

walking to transit.

As well as being healthier for people, Jacobsian urban environments in which people

use public transportation and active transport modes rather than driving are healthier for

the planet, as they reduce the large carbon emission costs of automobile transportation

and reduce the need for large areas of impervious surface for parking that contribute to

damaging storm-water run-off.
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A number of workers, including Lehmann (2016); Lee and Lee (2014); Schwa-

nen et al. (2012) and others have observed the need for more of the population to live

in walking-friendly, dense urban areas to help reduce carbon emissions that contribute to

global warming. However, Rice et al. (2020) has found that the limited supply of these

neighborhoods can create a paradoxical situation where the gentrification of dense urban

neighborhoods raises carbon emissions by replacing low-income populations with more

affluent ones with more carbon-intensive habits.

The gentrification of vital urban places has become a national phenomenon because,

after decades of neglect, the market has begun to value them highly. As Loh et al. (2019)

described in their report Foot Traffic Ahead, these areas have become linked to the “knowl-

edge economy” and associated with higher commercial as well as residential rents andwith

significantly higher GDP per capita than other urban areas.

The severe gentrification that has resulted from the resurgence of interest in these ar-

eas, besides the climatic consequences noted by Rice et al. (2020), is pushing low-income

and minority residents into areas where their mobility is significantly decreased, even

in “shrinking” cities such as Buffalo (Knight et al., 2018). Together, these factors—the

push for more-walkable neighborhoods for health, economic, and climate change reasons,

and the displacement problems caused by the limited supply of such neighborhoods—

necessitate a better understanding of the types of walkable, Jacobsian urban form in the

United States, and of urban and suburban form in the United States in general.
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In the next three sections, I will discuss three of these factors—a fine-grained mix-

ture of residential and commercial uses, a walkable street network, and density—in more

detail, alongwithmore recent research on their importance towalkable, public-transportation

friendly urban places. Then, in a fourth section, I will discuss previous attempts to classify

types of urban and suburban places.

1.1.1 Density: The Defining Trait of Cities

In a study in the Journal of Monetary Economics on the concentration of employ-

ment in cities, Chatterjee and Carlino (2001) noted that “In 1990, the state of Nebraska

had roughly the same population as the San Francisco metropolitan area. The difference,

of course, is that San Francisco’s population is crammed into a land area that is 1/80th that

of Nebraska.” Although the San Francisco metropolitan area has grown substantially in

the past thirty years, their point still stands: much of what differentiates a great city from a

rural area, both economically and socially, is due to having large numbers of people living

and working in close proximity.

Density is so significant because people’s ability to interact—positively and negatively—

is strongly influenced by proximity. Jacobs (2011, 276) argued that the health of cities

fundamentally depends on their maintaining relatively high population densities: she sug-

gested that a minimum of 100 dwellings per net acre were necessary for a healthy city.
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Even authors such as Hawley (1972) who favor the reduction in city andmetropolitan

population density brought about by the automobilization of American life have tended

to consider density important and, indeed, the mid-20th Century urban renewal planners

Jacobs railed against considered density a defining feature of the “slums” they sought to

eliminate (Jacobs, 2011, 14-15)

As studied by Angel and Blei (2016a); Brown et al. (2017); Glaeser and Ponzetto

(2007); Rosenthal and Strange (2020) and others, concentration of workers and firms can

lead to increased economic productivity, even on as small a scale of individual buildings.

This increased productivity is what motivates businesses to locate in expensive-to-build

skyscrapers on expensive land in major central business districts rather than spreading out

to cheaper locations. In addition, Glaeser and Maré (2001) found that working in cities

builds workers’ human capital, resulting in a wage premium that persists even when they

move elsewhere.

The social effects of density can be seen in voting patterns: as reported by Lang

et al. (2008), by the early years of this century, denser suburbs had begun to vote more in

line with central cities than with lower-density suburbs that were otherwise more similar in

urban form. More recently, a study by Gimpel et al. (2020) found that, controlling for age,

race, education, and other demographic factors, population density still played a substan-

tial role in determining Americans’ voting patterns. Whether, as suggested by Wilkinson

(2019), this effect is due to urbanizing involving self-sorting based on personality traits,

or whether the social effects of living at higher densities affect people’s political outlooks,

it is clear that density plays a major role in what makes urban places socially distinct.

8



Since people tend to live and work in different neighborhoods or districts in mod-

ern American cities, looking at residential population alone—a practice encouraged by

the fact that residential population is the factor most consistently reported by censuses

worldwide—does not tell the whole story. The number of employees in a given area is

now often reported by national censuses or workers’ insurance agencies, including the US

Census’s Longitudinal Employer-Household Dynamics program (LEHD), so considering

the summed density of residents and employees is a natural extension of using simple

population density.

Newman and Kenworthy (2006) evaluated data from a number of world cities found

that a density of activity units (jobs plus residents) of about 35 per hectare (14 per acre or

9,000 per square mile) correlates with a significant reduction in automobile dependence.

They then attempted to develop a theoretical model for understanding the physical con-

straints that lead to this threshold. This estimate of a density threshold for the transition

from automobile-based to transit-based mobility was not entirely novel: although Levin-

son and Kumar (1997) were working solely with American population density data, they

came up with a similar density threshold.

However, residential density and employment density are more complements than

substitutes: people need to be able to travel between home andwork easily and, unlike with

shopping or other errand destinations, they cannot generally simply rely on commuting to

the closest employment district. As a result, calculating the “activity” of a neighborhood

by adding the number of jobs and residents in a neighborhood is overly simplistic.
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1.1.2 Fine-Grained Mixtures of Uses

Amixture of uses, with residential, employment, and shopping destinations in close

proximity—the first of the factors that Jacobs (2011, Ch. 8) identified as essential to ur-

ban vitality—seems intuitively likely to promote walking and other non-automobile trans-

portation modes by shortening the distances traveled for many errands. Indeed, this con-

clusion has been supported by a number of empirical studies.

Sarzynski et al. (2006) found that job-housing proximity (which is related to mixing

of uses) was inversely related to commute time, while density and housing centrality were

not. However, they did not specifically consider transportation mode. Likewise, a meta-

analysis of studies in the literature by Ewing and Cervero (2010) found that land use diver-

sity was somewhat important to increasing non-automobile transportation modes, while

population and job densities alone were relatively unimportant. On the other hand, Seskin

et al. (1996, Ch. 2) suggested that land use diversity, while useful, was less important than

job and population densities in driving transit ridership.

Also relevant to the issue of mixtures of uses is the distinction made by Anas et al.

(1998, 1441-1442) between sub-centers being complements and substitutes. In ametropoli-

tan area with sub-centers that all contain similar mixtures of uses, they may largely be

substitutes, with most trips to or within the nearest sub-center rather than between sub-

centers: trips that walking can more easily serve. However, if sub-centers specialize in

different uses, they will be complements and there will be more significant travel between

them.
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Mixed-use environmentsmay be particularly important for facilitating non-automobile

travel by women. As early as the 1980’s, researchers noted that employed women’s travel

patterns differed from employed men’s, and that the former tended to have more time-

pressure on their travel and the need to make more multi-destination trips (Michelson,

1988).

More recently, Schwanen et al. (2008) found that women’s schedules tended to con-

tain more fixed-point obligations in time and space because they, even when they work,

tend to be responsible for a disproportionate fraction of household errands. Plyushteva

and Schwanen (2018) found similar obligation patterns in the context of inter-generational

caring relationships. As a result, the opportunity to perform multiple errands on foot in

the same neighborhood—and ideally, near their home or place of work—is likely to par-

ticularly benefit women and others who perform these traditionally-gendered-as-feminine

activities.

1.1.3 Walkable Street Networks

As discussed at length by Marshall (2005), urban and suburban street networks tend

to fall into several distinct patterns, largely dependent on when and for what transportation

technology they were developed. Much modern American development takes the form

of cul-de-sac residential and commercial developments designed to avoid through traffic

while, consequentially, forcing all traffic to follow a few major arterial routes.
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Such an arterial-and-cul-de-sac street networkmay be optimal for automobile-oriented

suburbia, but it is not amenable to walkability or pedestrian street life. In fact, as noted by

Jacobs (2011, 499), “actual physical cut-offs to foot traffic in particular are destructive in

cities.” She argued in Chapter 9 of the same work that street networks with small blocks

that encourage pedestrian through-traffic promote urban vitality by encouraging mixture

of uses as well as increasing urban safety.

A number of factors influence the safety and comfort of walking in cities, including

the condition of pedestrian infrastructure such as sidewalks and crosswalks, traffic speeds,

and the presence of amenities such as street trees and varied building fronts that provide

visual interest rather than monotony. In addition, street network structure is important

to walkability because it can have a large influence on how many destinations are within

walking distance of a given location.

Several studies, including Sandalack et al. (2013), have shown that certain types of

street networks tend to result in significantly larger walksheds (areas accessible within a

certain walking distance of a location). Recently, I did preliminary work (Rowlands, 2020)

showing significant differences in walkshed size within different sorts of neighborhoods

in large American metro areas.

The benefits of well-connected street networks for walkability are consistent with

studies on how street networks affect transit ridership. In their meta-analysis of studies

on factors that promote transit ridership, Ewing and Cervero (2010) found that the most

important features for increasing transit usage, after distance to transit, were the density of
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streets and intersections and the percentage of intersections that were four-way rather than

three-way. Seskin et al. (1996, Ch. 2) also suggested that street and sidewalk connectivity

are important for transit ridership, but found the effects hard to quantify.

In addition, Grosvenor and O’Neill (2014) explicitly positioned themselves in op-

position to researchers who focus on the importance of density to public transportation,

arguing that a focus on density to the exclusion of location, accessibility, and other design

characteristics may actually be leading to poorly-located and designed transit-oriented de-

velopments that actually encourage car use. The authors develop an alternative typology

of urban structure and form that they believe better leads to sustainable development.

1.1.4 Classifying Urban and Suburban Neighborhood Types

While theorists such as Jacobs (2011) have long attempted to identify the properties

of ideal urban neighborhood, a number of more recent empirical studies have attempted to

classify neighborhood types within metropolitan areas. In many cases, the first step in such

an analysis was simply to determine how to distinguish rural areas from the increasingly

low-density fringes of cities that have come to be known as exurbs.

Nelson (1992) summarized attempts to define “exurban” and found little consis-

tency, beyond that efforts tended to focus on commuting to a central county—which is

problematic given that much commuting in fact occurs within exurbs—and that they gen-

erally focused on defining counties, rather than places, as exurban, which is a particular

problem in western states with very large counties. He focused at length on the question

of the urban/rural divide and noted that the Census Bureau first defined “urbanized areas”
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in 1950, at which point a density criterion of 2,000 people or 500 housing units per square

mile was used. Since then, the required density has dropped to 1,000 people per square

mile (US Census Bureau, 1994, Ch. 12). However, as pointed out by Theobald (2001),

the Census’s defined urbanized areas exclude a significant amount of land settled at this

density because of discontinuity from the urban core, even if it is still part of the central

city’s commute shed.

Cohen and Debbage (2004) attempted to resolve the issue with defining the rural-

urban distinction at the county level by instead measuring it at the minor civil division

(MCD) / census county division (CCD) level. Rather than using a constant density cut-

off, though, they used an adjusted percentile rank for each MCD or CCD consisting of

the average of the percentile rank of its density in the country and within its census divi-

sion. The upper third of these, which they classified as “densely settled” had an average

population density of 1,000 people per square mile.

Distinguishing between the types of exurban and suburban places that make up the

vast majority of land in Americanmetropolitan areas has posed a complex problem as well.

Mikelbank (2004) specifically studied suburban incorporated places and used a number of

demographic and economic variables to identify 2-cluster, 4-cluster, and 10-cluster typolo-

gies of these municipalities. He found distinct clusters primarily based on income, race,

and age, but with relatively little consideration of land use factors likely to be relevant

from the context of transportation. Between this issue, and the fact that the study focuses

solely on incorporated places and does not consider variations within them, Mikelbank’s

approach is probably of limited applicability here.
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Berube et al. (2006) reviewed and discussed the literature on exurban places with

a focus on their definition and distinction from suburbs. While most of the studies cited

focused on counties rather than census tracts or block groups, there was a rough consensus

that “exurban” referred to areas with a commuting tie to a central city but outside of a UA,

and thus with a density of less than 1,000 people per square mile. Rate of growth was also

often considered important: exurban areas were expected to be fast-growing, compared

to low-density rural or rural-commuter areas. However, as noted by Fulton et al. (2001),

faster-growing metropolitan areas tend to have less exurban growth (in terms of increase

in land compared to increase in population) than slow-growing or declining metropolitan

areas.

Unfortunately, studies of exurbia seem to focus more on what sort of people live in

exurbs than in coming up with a durable definition of what exurbia is. However, there has

been some work on characterizing different sorts of exurban land use. Clark et al. (2009)

studied the patterns of exurban growth in American metropolitan areas. They determined

an index for measuring patterns of exurban development and found correlations to other

properties of metro areas, including polycentricity.

Brinkley (2018) considered the “rugosity” of cities, defined as the ratio of the urban-

rural interface to the area of the urbanized region. This is potentially a useful measure for

the connectivity of exurban places, but it is less clear that it is directly relevant to a broader

understanding of suburban and exurban geography. However, a rugosity-based measure

of areas meeting some threshold density considered necessary for effective transit service

could potentially be a useful approach for measuring the connectivity of transit-servable

places.
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It is not only exurbia that can be hard to define: the definition of “suburb” can be

elusive as well and, unlike the urban-rural distinction, the Census Bureau does not attempt

to distinguish between suburb and city. US Census Bureau (1994, Ch. 12) divides Census

tracts into “urban” and “rural” categories using a definition of “urban” that includes all

but the most far-flung and low-density suburbs. Even within suburbia, Lang and LeFurgy

(2007); Lang et al. (2008) have noted a class of suburbs they call “boomburbs” that seem to

be an intermediate between traditional urban centers andmore traditional small, primarily-

bedroom suburban communities.

A review of definitions of “suburb” in planning and urban geography literature by

Forsyth (2012) suggested that it may be impossible to give a single definition to the term

that applies universally. She suggests two alternative solutions to this problem. First, one

may abandon the term entirely and either insist on more specific terminology for each type

of metropolitan environment—as per Hayden (2003)—though this may prove a problem

when focusing on especially general topics of suburban development, or else focus on spe-

cific features of interest for a given study without using the term “suburb,” as has become

common in urban studies. Second, Forsyth (2012) observes, it may be possible to preserve

the term suburb so long as precise definitions are given of the type of suburb of interest in

a particular study.

Walkable urban places have also proved difficult to define and identify. One ap-

proach, not uncommon in studies of specific metro areas and sometimes seen even in

broader surveys—such as Leinberger (2007)—is an appeal to local expert knowledge. This

is the approach that that the Census Bureau has used to identify central business districts

in US metro areas, as discussed at length in Section 1.3.2. However, it leaves much to be
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desired, since it does not scale without an increasing pool of experts familiar with different

metropolitan areas and since it is not reproducible enough to support rigorous analysis of

differences in the quantity or quality of such places in multiple metro areas.

In a follow-up to Leinberger (2007)’s expert-knowledge identification of walkable

urban places in major US metro areas, Leinberger and Alfonzo (2012) developed a more-

systematic methodology for identifying such places in the Washington metro area. While

their method was more reproducible, and allowed for a comparison of the economic per-

formance, transportation costs, and socioeconomic equity of walkable urban places in the

Washington area, the complex scoring system it used would be very time-consuming to

apply to a large number of metro areas. Furthermore, their technique depended on the

proprietary Walk Score tool, which potentially raises replicability issues..

Loh et al. (2019) refined this approach for a study of walkable urban places—which

they referred to as “WalkUPs” in the thirty largest US metros by requiring that such places

have either 1.4million square feet of leasable office space or 340,000 square feet of leasable

retail space1 and a Walk Score value of 70 or greater at the most-walkable intersection.

They also excluded candidate locations dominated by automobile-oriented land use as

determined by visual inspection of satellite images for surface parking lots.

Discussion with Tracy Hadden Loh of the Anne T. and Robert M. Bass Center for

Transformative Placemaking at the Brookings Institution Metropolitan Policy Program in

Washington, DC confirmed that the Loh et al. (2019) approach still depended on expert

judgment. While the criteria for identifying WalkUPs depended on office and retail space
1For comparison, Garreau (1992)’s classic Edge Cities: Life on the NewUrban Frontier defined an “edge

city” as having five million square feet of leasable office space and 600,000 square feet of retail space.
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thresholds from the CoStar commercial real estate database, the initial boundaries of the

places—and thus the area over which this office and retail space was distributed—were

drawn by hand based on commercial real estate clusters with high Walk Score values ac-

cording to a Walk Score point dataset covering the United States.

An alternate approach, used by Fan (2010) to create a factor ecology model of

the Raleigh-Durham-Chapel Hill “Triangle Region” of North Carolina2, involves using

moving-window kriging (Gaussian process regression) to estimate both built-environment

and social factors . In addition to publicly available land-use and Census Bureau data, Fan

used data from a telephone interview survey of travel patterns. It is notable that her analy-

sis included quite detailed social data on residents as well as information about street grid

connectivity and transit service. However, the dependence on a survey of local residents

would make this approach quite expensive and time-consuming to expand to a significant

number of metro areas.

More recently, a series of papers by Krehl of the Leibniz Institute of Ecological

Urban and Regional Development in Dresden have taken a somewhat different approach in

creating a typology of types of urban centers in four German metropolitan areas: Cologne,

Frankfurt, Stuttgart, and MuniCh. Her initial approach involved using a local Moran’s I

statistic to identify job clusters (both of all jobs and of service-sector jobs) and clusters of

built-up areas (Krehl, 2015).
2This area, the Raleigh-Durham-Cary, NC Combined Statistical Area, is made up of the Raleigh-Cary,

NC Metropolitan Statistical Area, the Durham-Chapel Hill, NC Metropolitan Statistical Area, and the Hen-
derson, NC Micropolitan Statistical Area.
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More recent work by Krehl on typologizing land use types in these cities have in-

volved the use of remote sensing data as a proxy for built densities to take advantage of

its higher granularity (Krehl et al., 2016); the possibility of using a locally-weighted re-

gression model derived from job concentrations to identify urban centers and subcenters

(Krehl, 2018); and a combined analysis based on employment and population data, built-

up-volume, and history of development (Krehl and Siedentop, 2019).
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1.2 The History of American Urban Centers in the 20th Century

Although it has become commonplace to explain the US’s low urban densities and

low transit ridership by noting that many European cities are centuries older thanAmerican

ones and predate the automobile, American cities were just as much walking cities as the

cities of Europe and nearly as much so as cities had been for millennia. The first two stages

in the classic Borchert (1967) periodization of American metropolitan evolution—up until

roughly 1870—predated the introduction of mechanized street cars (the technology that

Americans originally meant when they spoke of “rapid transit”) and, in many cities, even

predated the significant growth of horse-pulled streetcar networks (Cudahy, 1995;Warner,

1962).

Although steam railroads were used for intercity travel and by a few rich business-

men to commute and animals were used to move cargo and occasionally for riding, nearly

everyone got around the cities of the mid-19th Century United States on foot. This fi-

nally changed with the expansion of horse-pulled and cable-drawn streetcar networks in

the 1870’s and 1880’s, along with and the introduction of the practical electric streetcar in

1888 (Cudahy, 1995; Lorenzo, 2014; Vuchic, 1999).

These transportation innovationsmade it possible to travel more quicklywithin cities

and allowed even low-wage industrial workers to easily commute several miles to work.

This, in turn, led metropolitan areas to expand outward significantly between 1870 and

1930 with new “streetcar suburbs” built around public transportation for suburbanites

commuting to work in the urban core, as discussed by Warner (1962) in his classic study

Streetcar Suburbs: The Process of Growth in Boston, 1870-1900.
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Streetcars brought workers and shoppers from the suburbs to city centers, but these

suburbanites still had to complete the last stage of their trips on foot, so the increasingly-

commercial urban cores remained structured around the needs of pedestrians. Suburban

residential areas that developed along streetcar lines tended to have less resemblance to

traditional neighborhoods, with non-residential uses strung out along the streetcar tracts,

but the ability of suburbanites to easily walk to stores, to church, and to the streetcar stop

remained essential (Warner, 1962, Ch. 7). In particular, places where circumferential and

radial streetcar lines crossed, significant commercial districts developed, though they were

not large enough to pose a threat to downtown central business districts (Lorenzo, 2014).

However, while American cities in 1910 were still largely oriented toward pedestrian

life and walkable neighborhoods, within two decades nearly every city in the country was

on the path toward a very different type of urban form, one not previously seen in human

history. Much of the the 20th Century history of American urban planning is the his-

tory of the destruction of walkable neighborhoods and their replacement with pedestrian-

unfriendly, car-oriented development patterns. This new dispensation had become so in-

grained in the American understanding of cities that, by the time Jacobs (2011) wrote her

1962 rallying cry for traditional urbanism, The Death and Life of Great American Cities,

she had to devote six chapters to describing the four factors she considered essential to

maintaining traditional urban vitality: mixed primary uses, small blocks, aged buildings,

and concentration.
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1.2.1 The Revolution of 1910-1930

How did walkable neighborhoods go from being the normal state of affairs in cities

throughout history to an endangered species in the United States over the course of the

20th Century? The answer begins with a pair of changes in the way American culture and

law understood public space and land ownership between 1910 and 1930.

Automobiles began to reshape American cities shortly after the introduction of the

Ford Model T, the first mass-produced automobile, in 1908. Public transportation rider-

ship in the United States reached its peacetime peak in 1926 and began to fall (Cudahy,

1995) while, by 1925, there were already seventeen cars for every hundred Americans

(Jones, 2008, 12).

This explosion of driving led to fundamental changes in the relationship between

Americans and the public sphere in a way that the rise of streetcar suburbs had not. As

documented by Norton (2007, 2008), the 1910’s and 1920’s saw a massive spike in pedes-

trian deaths at the hands of motorists. Initially, as cars were rare and seen as toys of the

rich, these deaths led to public outrage and efforts to force cars to conform to the pre-

automobile understanding that pedestrians had a right to use the entire width of the road

for travel, to cross mid-block, and even to play in the street. As late as 1923, a petition

signed by more than ten percent of the population of Cincinnati placed a referendum on

the November ballot to require mechanical governors limiting the top speed of all cars

entering the city to 25 miles per hour.

22



However, a massive advocacy and advertising campaign by automobile manufac-

turers and motorists’ clubs in the 1920’s led to cultural and legal shifts in who was un-

derstood to have a right to the road: the word “jaywalker” was popularized as part of

this campaign to refer to pedestrians who exercised what had been traditional rights in

ways that inconvenienced motorists by crossing streets mid-block or entering the roadway

when a car was approaching (Norton, 2007). Soon, traffic engineers begin to widen and

redesign city streets to increase street parking while allowing for faster passage of more

automobiles (Norton, 2008). Even citizens’ rights not to be stopped or searched in public

places without probable cause were reshaped and restricted in response to the shift to an

automobile-based society (Seo, 2019).

At the same time as cars were reshaping American public space, the spread of zoning

laws was leading to a fundamental change in American land tenure that rendered the fine-

grained, heterogeneous land use that had been traditional in cities illegal in most of the

country. From their beginning, zoning laws in American cities were often motivated by

racism, and it is notable that they became common just as the beginning of the Great

Migration led to the rise of substantial Black populations in Northern cities.

As long as white Americans had been able to keep their Black neighbors enslaved—

first as chattel and then as effective debt-slaves in the Jim Crow South—they did not neces-

sarily mind living near them or even having live-in Black servants. However, when Black

Americans began to move to cities and to find industrial jobs that gave them more eco-

nomic freedom, they quickly found numerous barriers rapidly rising up to keep them from

living in the same areas as white people—unless they were living in the homes of white

families as servants (Pietila, 2010; Rothstein, 2017).
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The charge to use zoning-like laws to limit the spread of Black neighborhoods began

in 1910 with the passage of a Baltimore law banning the purchase of houses on city blocks

by members of a race that was not in the majority on a given block. This led to a host

of similar laws across the country until, in its 1917 Buchanan v. Warley decision, the

Supreme Court overturned a Louisville law based on the Baltimore one: not on the basis

of the rights of racial minorities, but as an infringement of the rights of landowners to sell

their land to whomever they wished (Pietila, 2010, Ch. 1-2).

Because the Buchanan v. Warley decision was based on the rights of landowners,

however, the courts held that it did not prevent landowners from voluntarily creating re-

strictive covenants: private agreements included in land deeds that banned the land from

being sold to Black or other minority buyers, prevented Black renters from living on it,

and often prevented high-density housing or commercial uses, all of which were claimed

to lower property values. Unlike racial zoning, restrictive covenants had to be separately

added to every lot in a neighborhood to be effective which, in practice meant they could

only easily be applied to land in newly-built subdivisions by the developer[Ch. 5](Roth-

stein, 2017).

Restrictive covenants were soon added to nearly all new suburban developments by

developers who hoped to increase sale prices by promising white, middle-class buyers

that Black neighbors would not be moving in. This meant that, as the Black populations

of cities rapidly grew in the first half of the 20th Century, these new residents were crowded

into older housing in the denser urban cores where restrictive covenants could not easily

be added to the already-fragmented plots of land.
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During the same period when racial zoning was being implemented and then re-

placed with restrictive covenants, land-use zoning was introduced in American cities.

While nuisance industries such as slaughterhouses and tanneries had long been restricted

to certain neighborhoods in many cities, building codes mandating brick or stone con-

struction were a common response to urban fires at least as early as the 1666 Great Fire

of London, and some cities restricted building heights after the introduction of safety ele-

vators made much taller buildings practical, urban landowners had long been largely free

to build whatever sort of buildings they wanted on their land and to use them as they

wished.Starting in the 1910’s, however, much more detailed land-use zoning codes were

introduced. These codes generally mandated complete separation of residential and com-

mercial land uses and banned multi-family dwellings and small lots in most residential

areas, effectively mandating an end to high-density and mixed-use development in many

areas (Hirt, 2014, Ch 6.).

The introduction of land-use zoning to “protect” suburban single-family homes on

large lots from “encroachment” by denser housing or commercial uses was another re-

sponse to the fears of middle-class white homeowners that Black and immigrant residents

would move into their neighborhoods. Although these laws, which restricted the types of

buildings and activity permitted on private land, were initially criticized as authoritarian

and even “Communist,” they were upheld by the Supreme Court in its 1926 Euclid v. Am-

bler decision on the basis that they were a legitimate use of the state’s police power to

increase the value of land (Hirt, 2014, Ch. 6).
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By 1930, the fight had largely been won by the advocates of what became known

as “Euclidean” zoning, and the American City Planning Institute described the promo-

tion of “health, safety, morals, convenience, prosperity, and the general welfare” (Hirt,

2014, 133)—a set of options broad enough to easily cover racist motivations—as legiti-

mate uses of zoning. The era of what Ross (2014) has called “suburban land tenure”—in

which the rights of landowners are to prevent their neighbors from using their land in non-

standardized ways largely eclipsed the rights of landowners to make land-use decisions

based on market pressures or personal preferences—had begun.

As a result, by the 1930’s, American metro areas were increasingly divided into

dense, mixed-use cores of older buildings with Black and low-income immigrant residents

and rings of low-density suburbia where neither mixed land use nor Black residents were

allowed.

1.2.2 1930-2000: Redlining, White Flight, and Urban Renewal

The pattern that had been set in place by 1930 largely continued for the next sixty

to seventy years, albeit by different means as time went on. New developments, govern-

ment funding, and transportation infrastructure were directed to the suburbs while the

denser, historically-walkable neighborhoods in urban cores were encouraged to decay and

sometimes actively destroyed by government action. At the same time government policy

and elite practice also helped to ensure that the growing suburbs remained largely white,

while Black residents of metro areas were kept contained in the decaying cores. This

process formed a self-reinforcing cycle: as urban cores became associated primarily with
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Black Americans, the logic of white supremacy produced political and economic pres-

sures against investment in historically walkable, urban places and promoted suburbia and

car-based lifestyles as better and more properly “American.”

Although the phenomena of white flight and complete divestment from urban ar-

eas did not fully come into being until the 1950’s, Federal programs began to encourage

these processes during the New Deal. One major component of this was the loan policies

mandated by the Federally-created Home Owners’ Loan Corporation (HOLC), which are

commonly referred to as “redlining.”

In the early 20th Century, mortgage loans to individuals for home construction or pur-

chase generally had very high interest rates and short terms—always less than a decade—

because of the high risk of default. Furthermore, these mortgages were not amortized,

meaning that the entire principal was due for repayment at the end of the term, rather

than being paid off over the course of the loan and thus reducing the total interest owed.

This effectively limited home-ownership to relatively well-off Americans who could save

a substantial portion of the price before building or buying a home (Warner, 1962, Ch. 6).

The HOLC was created by the Franklin Roosevelt administration in 1933 as a re-

sponse to large numbers of home-owners who had taken out mortgages in the economic

boom years of the 1920’s and who were now at risk of default. It purchased mortgages at

risk of default and replaced them with loans at much more generous terms: 15 and then

25 years, with amortization. In order to assess risk and decide whether and at what rate

to issue loans, the HOLC created color-coded maps of neighborhood “risk”—effectively,
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a prediction of the likelihood that a house would lose value during the course of the loan,

meaning that the government would lose money if it had to foreclose (Rothstein, 2017,

Ch. 4).

Unsurprisingly, given the prevailing belief in the real estate industry that racial mix-

ing and the presence of Black or other minority residents lowered housing values, the

racial makeup of neighborhoods was a major factor in how they were assessed. All neigh-

borhoods with predominantly Black residents were placed in riskiest category, red—the

origin of the term “redlining”—meaning that if loans were issued to buyers of houses in

these neighborhoods at all, they would be at significantly higher interest rates. This made

it difficult for Black buyers to purchase homes in what were often the only neighborhoods

where they were allowed to purchase them; it also made it difficult for Black homeowners

to sell their homes or get loans for major repair work, creating a self-fulfilling prophecy

that housing stock would decay and land values would fall in Black neighborhoods (Roth-

stein, 2017, Ch. 4).

Although the HOLC was dissolved in 1954, similar practices—also often included

in the broadermeaning of “redlining”—were implemented by the Federal HousingAdmin-

istration (FHA), which was created in 1934 to insure privately-issued mortgages against

default. The FHA required the loans it insured to have relatively generous policies, making

home ownership more attainable for the the families eligible for them. However, it also re-

quired that insured mortgages be in whites-only neighborhoods and strongly discouraged

banks from making loans in urban neighborhoods or in areas that were even near Black
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or low-income neighborhoods. Furthermore, FHA policies discouraged well-connected,

grid-like street networks and neighborhoods that allowed commercial land uses or multi-

family housing (Rothstein, 2017, Ch. 4).

The effect of redlining and other FHA policies was two-fold. These policies helped

white families build generational wealth through home ownership while denying the same

benefits to Black family. And they funneled private capital into car-oriented, non-walkable

suburban developments while keeping it from being invested in maintenance and improve-

ments to dense, walkable traditional urban cores.

Initially, New Deal programs did not produce a rapid change in the American built

environment because, during the Great Depression, there was little private capital avail-

able for new developments. However, in the years after World War II, the Federal policies

established during the New Deal shaped how the postwar economic boom and the re-

sponse to a decade’s worth of unmet demand would be translated into the American built

environment.

Huge, entirely car-oriented suburban developments of single-family home mono-

cultures in the model of Levittown, New York (built 1947-1951) sprang up on the rural

fringes of metropolitan areas. These developments, heavily subsidized by Federal policy

and open only to white home buyers acted as one of the driving forces of the flight of white

residents from urban areas.

At the same time, urban housing stock continued to decay and neighborhood re-

tail. Even white homeowners and entrepreneurs found it impossible to get loans to buy

housing, make repairs, or start businesses in urban cores and older, inner-ring streetcar

suburbs (Jacobs, 2011, Ch. 16); the situation was even worse for Black homeowners and

29



in neighborhoods that were majority-Black or were perceived as likely to become so in the

future. These structural forces acted as a second driving force, pulling white residents and

entrepreneurs into the new suburbs.

Furthermore, the cultural disconnect between the increasingly large corporations

that increasingly fulfilled roles—such as operating grocery stores—that were essential to

maintaining functional urban environments and the low-income, Black residents of those

communities tended to prevent investment even when capital was available. White work-

ers and managers perceived urban areas as unsafe and crime-ridden while Black residents

perceived white retail workers as arrogant if not actively racist, a combination that dis-

couraged businesses from providing even essential retail services in these areas (Jones,

1967).

The speed and scale of the demographic transition of American urban cores in the

second half of the 20th Century was incredible. As documented by Rowlands and Loh

(2021), roughly half of the US population lived in the metro areas of the nation’s fifty

largest cities in 1950. Just over half of this population lived within the city limits of central

cities, and both the central cities and the suburbs were, on average, 90% white. In 2018,

almost exactly the same share of the US population lived in these metro areas, but only

a fifth of it lived within the 1950 boundaries of those central cities. That fifth of the

population was about 35% white in 2018, while the four-fifths of the population that lived

outside the 1950 central city borders was 60% percent white.

Many central cities saw much more intense declines. Detroit and St. Louis each

lost 63% of their population between 1950 and 2018, while Buffalo and Pittsburgh lost

55%. Evenmetro areas that were economically successful and saw large population growth
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overall had major declines in central city populations. There are four times as many people

living in the counties that make up the current Atlanta metropolitan area today as there

were in 1950, but 37% fewer people living within the 1950 city limits (Rowlands and Loh,

2021).

Themassive loss of population and businesses that urban cores saw after 1950meant

a reduced tax base. Rusk (2006, 2013) has described how this was a disaster for cities that

were unable to expand their boundaries to capture the new suburbs, as they lost revenue

but were still responsible for maintaining infrastructure built for a larger population and

for paying the pensions of the larger workforces they had needed before population loss.

Yinger (2010) has noted that the legacy expenses that older municipalities primarily

populated by people of color and especially Black Americans may be contributing to a

form of bond rating redlining, where municipal bonds issued by minority communities

are rated lower and these municipalities face higher borrowing costs, compounding the

difficulty of a reduced tax base. In addition, as Randall et al. (2018) discuss, the decen-

tralization of employment and businesses in US metro areas has also caused “race to the

bottom”-type issues in some regions, as central cities and suburban jurisdictions compete

to offer the largest tax breaks to convince corporations to locate in their part of the region.

Furthermore, in those cases where cities were able to annex surrounding suburbs,

it often came at the cost of political independence. A good example of this is the consol-

idation of the City of Indianapolis with Marion County, Indiana to form an entity called

“Unigov” in 1970. Unigov was established at the behest of white, suburban politicians

who wanted to retain control over a city that was rapidly becoming majority Black. It en-

sured that government resources remained in the hands of leaders who cared little about
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the plight of the crumbling core of Indianapolis that they had abandoned and the Black

population who lived there. At the same time—as has been common in cases of urban

annexations in the US—the city and suburban school districts were not merged, allowing

white suburbanites to continue to send their children to effectively segregated schools and

avoid paying taxes to support majority-Black schools (Hammar, 2012; Poletika, 2019).

More recently, the 2003 merger of Louisville with Jefferson County, KY largely

resulted from a push by the business community, which hoped to increase the city’s profile.

As in the Indianapolis-Marion Countymerger, the governments of suburbanmunicipalities

were left intact, while the old city of Louisville and unincorporated Jefferson County were

put under county-level governance. And, as with Indianapolis, the merger seems to have

benefited suburban areas more the central city and to have largely increased suburban

control over policy decisions (Savitch et al., 2010).

When Federal or state funding was available for urban cores, it often came in the

form of what Jacobs (2011, 383) called “cataclysmic money”: large amounts of money for

mega-projects planned by and often intended to serve the needs of a governing elite that

no longer had personal experience with urban life or connections to those who lived in the

places the projects were intended to serve.

These projects, which were commonly marketed as “urban renewal” were intended

to make up for years of disinvestment and to correct conditions of poverty and decline.

However, they often made matters worse through a failure to understand the needs of the

communities they were intended to serve or even to understand the basics of how vital
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urban places function. Huge empty plazas, civic centers of questionable utility, and high-

rise public housing designed in ways that discouraged social interaction were often con-

sequences of cataclysmic money (Jacobs, 2011, Ch. 16).

Cataclysmic money also built freeways through urban cores—the Federal govern-

ment paid for 80% of the cost of Interstate highways—often intentionally destroying dense,

Black neighborhoods perceived by planners as “slums” while speeding suburban com-

muters to downtown jobs (Jones, 2008). These freeways, as was recognized at the time by

Shipler (1975), served to form the structure for the new suburban geography of American

metro areas.

Furthermore, because money for urban renewal projects came and went with the

whims of outsiders and was rarely sustained unless, like the freeways, they served subur-

ban residents—especially since the political will to spend money on programs that white

voters saw as primarily benefiting Black people was hard to maintain—the infrastructure

produced by urban renewal that did benefit urban communities often decayed rapidly due

to neglect (Jacobs, 2011, Ch. 16).

1.2.3 2000-Present: Gentrification and the Re-evaluation of Urbanism

The past twenty years have seen a major change in the economic conditions of cities

and how academic, government, and business elites perceive them. Today, walkable urban

places have become some of the most in-demand environments in American metro areas

(Loh et al., 2019) and some central cities, especially those with many high-paying service

jobs, are seeing a resurgence (Short and Mussman, 2014). Unfortunately, though, the
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decades of government policy and private actions that worked together to eliminate vital

urban environments through a mixture of neglect and active destruction while essentially

prohibiting more of them from being built have left the US with a very small stock of such

places.

This mismatch of supply and demand has become a disaster for many of the long-

term residents of urban neighborhoods, who are being displaced by rapid increases in

prices as new populations with higher incomes move in (Knight et al., 2018; Short and

Mussman, 2014). It is also a disaster for the environment in an era where climate change

has made it essential that we rapidly decrease our fossil fuel use, something that can only

be done by having the population as a whole—not only the few people who can move

into the few walkable urban cores that currently exist—adopt less car-dependent lifestyles

Lehmann (2016); Lee and Lee (2014); Rice et al. (2020); Schwanen et al. (2012).

The growing recognition that Jacobsian urban places are valuable is an important

change but, as is to be expected of the repudiation of nearly a century of policy and dogma,

it is moving slowly. Meanwhile, American society is in a race against time to retrofit our

built environment to make walkable, Jacobsian, vital places available more widely before

the nation’s relatively few such places become inaccessible to all but the very rich and

before our current national lifestyle destroys the planet.
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1.3 Typologizing Metro Areas

As available computational power has increased over the past two decades, it has in-

creasingly been possible to apply computational techniques to the typologization of metro

areas based on relatively-complex representations of their population and job distributions.

Several distinct approaches have developed, using data of varying complexity, but much

of the work has particularly focused on job distribution as the determining factor of urban

form.

Although the phrase “urban sprawl” is perhaps most strongly associated with low-

density residential subdivisions, employment in American metropolitan areas has also

largely moved to the suburbs. While in 1950, the majority of workers in the typical Ameri-

can metropolitan area worked in the downtown core, as of 1996, in the one hundred largest

metropolitan areas in the country, only 22% of people worked within three miles of the

city center, while 35% of people worked more than ten miles from the city center (Glaeser

et al., 2001).

This increased sprawl is not only a consequence of manufacturing jobs, which re-

quire large amounts of space, moving to low-density areas, and of retail moving outward

to follow customers: Lang (2000) studied the distribution of office space in metropolitan

areas and found that from 1979 to 1999, the share of office space found in the core city of

the average metropolitan area dropped from 74% to 58%.
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While jobs in large American metropolitan areas remain more concentrated in urban

cores than population does, the sprawl of jobs into suburban office parks is perhaps an

even larger problem for a metropolitan area’s amenability to public transit than residential

sprawl. This is because it requires significant suburb-to-suburb service, alongwith suburb-

to-city and intra-city service.

1.3.1 Centralization and Concentration of Population and Jobs

Density provides a simple, one-dimensionalmeasure of how concentrated ametropoli-

tan area is, but it does not really provide enough information to characterize population or

job distribution. For transportation, and particularly public transit, it makes a significant

difference whether the dense neighborhoods of a city form a single compact cluster, or are

spread out among many smaller clusters separated by low-density areas, a distinction that

a region-wide average cannot make.

One solution to this problem is to treat the population or job distribution of ametropoli-

tan area as a simple exponential decay with distance r from the downtown core. In this

case, the density at distance r from the core is

d(r) = d0e
−γr
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where d0 is the density in the downtown core and and γ is a positive constant called the

density gradient, the proportional rate that density falls with distance. Anas et al. (1998,

1436-1438) discussed this model at some length and tabulated values of γ for a number

of world cities in the 19th and 20th Centuries as evidence of the consistent pattern of cities

becoming increasingly sprawling over time.

However, thismodel does not accurately describe the distribution of density inAmer-

ican cities, as it assumes radial symmetry—that metro areas are roughly circular with the

same distributions in each direction from the core—and neglects the existence of popula-

tion clusters outside a metropolitan area’s primary downtown.

A related approach, suggested by Manin (2010) and used by Walker (2012, Ch. 9)

in his discussion of the need to consider the densities at which most people actually live,

rather than the overall population density in transit planning, is to plot the fraction of a

metro area’s population living in Census tracts or other small geographies as a function of

their densities, producing a curve that represents the density distribution of residents. This

method is essentially an extension of Craig (1984)’s population-weighted density measure,

which will be discussed further in Section 3.3.2. Like population-weighted density, it does

not take into account the spatial relationship between the geographies used to bin the data

and so cannot identify the scale of population clustering. As a result, more complexmodels

are needed to fully describe residential sprawl.
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Another approach to describing the distribution of jobs in a metropolitan area is the

two-dimensional model proposed by Anas et al. (1998, 1431), consisting of centraliza-

tion—the extent towhich employment is concentrated in a single central business district—

and concentration—the extent towhich employment is locally clustered or dispersed evenly.

This model potentially leads to three types of cities:

• monocentric cities, with high levels of centralization and concentration.

• polycentric cities, with a low level of centralization and a high level of concentration.

• dispersed cities, with low levels of centralization and concentration.

(A low level of concentration seems to imply a low level of centralization, so the two

dimensions are not fully independent, and there is no fourth category of low-concentration,

high centralization cities.)

Having established this model, Anas et al. (1998, 1439-1444) discuss early attempts

to measure the polycentricity of employment in individual American metropolitan areas

by identifying job clusters. While these studies consistently found subcenters, it proved

much more difficult to precisely quantify them.

In both newer cities that developed alongside the automobile and older pre-automobile

cities, the number and boundaries of these subcenters was very sensitive to the exact em-

ployment density and total employment cut-offs used in defining them. These subcenters

were also often arranged in corridors that, with the right choice of density cut-off, could

become a single, very long sub-center. Furthermore, they note that even in cities with

significant numbers of employment clusters, a large fraction—and often a majority—of

employment exists outside clusters.
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Glaeser and Kahn (2001, 9-10) attempted to approximate the centralization and con-

centration of Americanmetropolitan areas relatively simply, by fitting employment density

to an exponential function and calculating employment density gradients. They found that

job centralization and job concentration were relatively strongly correlated. They also,

(pp. 21-25) found that population centralization was generally (but not always) less than

but correlated with job centralization, and that, with the exception of the oldest and newest

metropolitan areas, there was little correlation between city age and centralization. In ad-

dition, decentralization of jobs increased with increasing political fragmentation of the

metropolitan area.

Glaeser and Kahn (2003, 7-11) then expanded their previous work by calculating

employment and population density gradients, confirming that job centralization and pop-

ulation centralization are strongly correlated in American metropolitan areas. In addi-

tion, they measured the percentage of residents living and workers working within three

and ten miles of the central business district (CBD) as defined by the 1982 Census Eco-

nomic Survey (see Section 1.3.2) for each city. To characterize concentration, they used

the arithmetic mean population-weighted population densities and employment-weighted

employment densities of these cities.

A correlationmatrix of their results showed a strong correlation (r2 = 0.77) between

the percentage of employment and population within three miles of the central business

district and an even stronger one (r2 = 0.89) between the median worker’s and the median

person’s distance in miles from the CBD. Both of these results suggest that employment

and population centralization are correlated.
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Likewise, they found a correlation with r2 = 0.90 between population-weighted

average population density and employment-weighted average employment density, sug-

gesting that employment and population concentration are correlated as well. On the other

hand, there was little to no correlation between their measures of concentration and cen-

tralization.

More recent work by Angel and Blei (2016b) indicates that job distributions in

US metro areas are largely neither centralized nor concentrated. They found that three-

quarters of jobs in the average metro area are dispersed outside of CBDs and non-CBD

employment clusters, in areas with low job density. Furthermore, this does not necessarily

lead to short commute distances: only one out of twelve workers live within two kilometers

of their workplace. This largely comports with Lang (2003), who found that the majority

of US jobs were in dispersed “edgeless city” rather than in CBD or “edge city” job clusters.

1.3.2 Defining the Central Business District

One complication in measuring metro area density gradients, and in applying some

of the more complex models of population and job density discussed below is the need to

identify the location of a metro area’s central business district (CBD) or “downtown.” For

a simple density gradient calculation, one could in many cases simply select the Census

tract with the highest population or job density and declare it to be the metro area’s down-

town. This may not always work, however, especially in smaller metro areas where a large

hospital may contain as many jobs as the central business district without being central or

having the diversity of employers associated with a normal central business district.
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As Federal agency responsible for geographic statistics, the Census Bureau would

theoretically be an ideal source for definitions of central business districts. However, the

Census Bureau last defined CBDs nearly forty years ago, in 19823, and its guidelines for

defining them—

A CBD was defined as an area of very high land valuation characterized by

a high concentration of retail businesses, offices, theaters, hotels, and service

businesses, and by a very high traffic flow. It was delineated to follow existing

census tract boundaries i.e. to consist of one or more whole census tracts, ex-

cept in 14 cities where CBD tracts crossed corporate limits. In those instances,

only the part of the census tract that lay within the limits was considered to be

in the CBD. (US Census Bureau, 1987, 201-202)

—are more subjective than quantitative (Limehouse and McCormick, 2011; Brown et al.,

2017). A related, though perhaps unavoidable, issue with the Census CBD definitions

is that their boundaries were determined by committees of local stakeholders, which in-

creases the likelihood that they are not defined consistently nationwide (US Census Bu-

reau, 1987, 201-202; US Census Bureau, 1994, Ch. 3). In any case, forty-year-old CBD

boundaries must be considered too outdated to accurately represent cities today.

Glaeser et al. (2001) and Cortright (2015) attempted to account for the outdated

CBD boundaries provided by the Census definition by defining CBD employment as all

employment within three miles of the center of the Census-defined CBD. While it is un-
3These definitions, from the 1982 Economic Census, comprise 456 CBDs for 455 cities in 315metropoli-

tan statistical areas (Brown et al., 2017).
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likely that many metro areas’ CBDs migrated by several miles in the past few decades,

boundaries generated this way are far too large to usefully characterize the dense core of

employment that constitutes a central business district.

One alternative approach used by a number of researchers is to define CBDs centered

on the city halls of the principal cities of each metropolitan area. However, in many large

cities, city hall is not actually located near the current center of employment: consider the

distance between New York City Hall and Midtown Manhattan, or Boston’s Government

Center and financial district. Despite these shortcomings, an analysis by Holian (2019)

found this method to be the best available option for developing a catalog of CBD locations

for modern metropolitan areas. For comparison, one of the other methods they considered,

the Census Bureau Gazetteer files providing what purport to be “representative latitude

and longitude coordinates,” identified the center of San Francisco in the Farallon Islands

which, although legally part of the City and County of San Francisco, are thirty miles west

of the mouth of San Francisco Bay.

Recently, Brown et al. (2017)made a rather thorough attempt to define CBDs for ma-

jor metro areas using a machine-learning algorithm based on employment density, trans-

portation links, and the share of employment in occupations that particularly benefit from

agglomeration. This sort of approach seems likely to be the most effective, as a simple

density cut-off uniformly applied will either fail to identify CBDs at all in many smaller

and less dense metro areas, or else will define very large swaths of cities like New York

and Chicago as central business district.
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1.3.3 Typologizing Metropolitan by Polycentricity

Lee (2007) analyzed movement of jobs in six American metro areas between 1980

and 2000 and found three distinctive patterns of employment distribution: traditional

monocentric metro areas (New York and Boston), polycentric metro areas (Los Ange-

les and San Francisco), and metro areas with dispersed employment (Philadelphia and

Portland). These results are consistent with the typology used by Anas et al. (1998), but

Lee considered a number of indices of centralization and concentration beyond the limited

ones used by Glaeser and Kahn (2003).

Lee (2007) measured centralization of jobs by census tract using three measures.

First, the modified Wheaton index (MWI), (Wheaton, 2004)

MWI =
(
∑

iEi−1di)− (
∑

iEidi−1)

dmax

where tracts are sorted by increasing distance from the CBD, Ei is the cumulative propor-

tion of employment in tracts 0 to i, di is the distance of tract i from the CBD, and dmax is

the distance of the outermost tract from the CBD. Second, the area-based centralization

index (ACI), (Massey and Denton, 1988)

ACI =

(∑
i

Ei−1Ai

)
−

(∑
i

EiAi−1

)
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where tracts are sorted by increasing distance from the CBD, Ei is the cumulative propor-

tion of employment in tracts 0 to i, and Ai is the cumulative proportion of area in tracts 0

to i. And, third, the weighted average distance from CBD (ADC), (Galster et al., 2001)

ADC =
∑
i

eidi
E

where ei is the number of employees in tract i, di is the distance of tract i from the CBD,

and E is the total employment in the metropolitan area.

Lee (2007)’s two measures of concentration were the Gini Coefficient, (Gordon

et al., 1986; Small and Song, 1994)

Gini =

(∑
i

Ei−1Ai

)
−

(∑
i

EiAi−1

)

where tracts are sorted by employment density, Ei is the cumulative proportion of em-

ployment in tracts 0 to i, and Ai is the cumulative proportion of area in tracts 0 to i, and

the Delta Coefficient, (Massey and Denton, 1988; Small and Song, 1994)

∆ =
1

2

∑
i

∣∣∣ei
E
− ai
A

∣∣∣
where ei and ai are the employment in and area of tract i and E and A are the total em-

ployment in and area of the metropolitan area.

The MWI and ACI indices measure how fast cumulative proportion of metropolitan

employment increase as one moves away from the CBD and vary from−1 (perfect decen-

tralization) to 1 (perfect centralization). AGini or∆ value of 0 indicates complete equality
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of employment density between tracts, while one of 1 indicates complete inequality. Be-

cause their measures of centralization and, to a lesser degree, concentration, are sensitive

to the presence of large, low-population census tracts at the edge of the metropolitan area,

Lee limited their analysis to the tracts closest to the CBD that contained 95% of the MSA’s

population.

Lee also attempted to identify employment sub-centers in metropolitan areas both by

using a minimum density cut-off of the 90th percentile employment density in the region

and by using geographically weighted regression (GWR). They found that the minimum-

density approach tended to primarily identify a region surrounding the CBD while GWR

was more effective at identifying many regional sub-centers.

Amore general survey of the spatial distribution of employment inAmericanmetropoli-

tan areas was performed by Hajrasouliha and Hamidi (2017). After an extended review of

past attempts to describe and typologize the spatial structure of employment in American

metro areas, the authors discuss their efforts to develop a useful typology of the employ-

ment distributions in 356 Metropolitan Statistical Areas (MSAs) in the contiguous United

States.

Because they wish to analyze such a large number of metro areas, they focus on

definitions of urban employment “cores” that can be calculated algorithmically from em-

ployment data without in-depth analysis. After an extended, and very useful, description

of their efforts to define measures of employment distribution, they propose a typology of

five types of MSA based on employment distribution and discuss differences between the

metro areas in each category. Notably, they used 1983 Census-defined central business

districts, because this is the last year the Census defined this.
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Having established their typology, the authors go on to compare themean population

densities and population sizes of the MSAs in each of their five categories. However, in

doing this, they do not take into account the very different size categories of the metro

areas in their sample. It is notable that the mean population densities of the categories

track quite well with the mean populations of the categories. Since it is well-known that

larger metropolitan areas tend to be denser, it is very unclear whether there is actually

a pattern of different job distributions being related to different population densities, or

whether this is solely a size effect: it would be very interesting to see this same comparison

for MSAs within the same rough size category.

More generally, given that the MSAs spanned a range of sizes from nearly twenty

million residents to under two hundred thousand residents—a difference of a factor of one

hundred—the authors should have considered several different size classes separately in

discussing the differences between metro areas in their different categories. For example,

the apparent tendency of polycentric MSAs to be large might be a consequence of the

largest MSAs to be polycentric, or it might be a consequence of the fact that nearly half

of the MSAs studied have under two hundred thousand residents and may be too small

to support identifiable secondary job clusters. These two effects would look the same as

their data is presented, but would actually correspond to very different statements about

the nature of polycentricity.
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1.3.4 More-Complex Typologies of Metro Area Sprawl

Over the past two decades, a group of researchers, mostly based at Wayne State

University in Detroit, have been developing methods to measure and classify sprawl in

American urbanized areas. In the first study in this series, Galster et al. (2001) performed

a literature review of definitions of sprawl and found many inconsistent definitions of it.

They then developed a set of eight quantitative dimensions of sprawl based on laying half-

mile-square and mile-square grids over a UA and and applied six of them to the distri-

bution of housing units in thirteen urbanized areas across the US to determine whether

they matched intuitive definitions of “sprawl.” They found that the six dimensions tested

were independent but seemed to all yield results relatively consistent with their intuitive

understandings.

Wolman et al. (2005) continued this work by evaluating the issue of what land should

be counted in measuring sprawl. While water areas are clearly not part of the land area of a

city, various other types of non-developable land should potentially also be excluded. The

authors use satellite imagery and the National Land Cover Database (NLCD) to measure

sprawl in several major metro areas and to argue that the choice of what land to include

strongly influences the results.

However, while they could find no theoretical justification for a specific choice of

land to include, they proposed a unit they refer to as the Extended Urban Area (EUA) of a

metropolitan area: “the Census Bureau-defined urbanized area, modified to follow census

tract boundaries, as well as additional ‘outlying’ one mile square grid cells that contain
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60 or more dwelling units (identified using data at the census block level), and are located

in a census tract from which at least 30 percent of the workers commute to the urbanized

area."

Using EUAs as their unit of analysis, Cutsinger et al. (2005) evaluated Galster et al.’s

indices of sprawl for residential and employment sprawl in fifty of the one hundred largest

American MSAs. They then analyzed the correlations between the indices and performed

a factor analysis to identify seven independent dimensions of land use:

• density/continuity, a combination of the area-weighted averages of jobs and housing

units, the percentage of square-mile units within the EUA in which 50% or more of

developable land has been developed, and the share of the EUA that is within the

Census UA.

• proximity, the ratio of the average distance among centroids of the square-mile cells

in the EUA to the weighted average distance among housing units in the EUA plus

the ratio of the average distance among centroids of the square-mile cells in the EUA

to the weighted average distance among housing and jobs in the EUA.

• mixed-use, a combination of the average number of housing units in the same square-

mile cell as a job and the average number of jobs in the same square-mile cell as a

housing unit.

• housing centrality, the ratio of the average distance to city hall of the cells in the

EUA to the average distance to city hall of a housing unit in the EUA.
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• housing concentration, the percentage of housing units that would need to move to

produce an even distribution of housing units within square-mile cells in the EUA.

• job distribution, the job equivalents of the housing centrality and concentration di-

mensions plus the ratio of the average distance among centroids of the square-mile

cells in the EUA to the weighted average distance among jobs in the EUA.

• [job] nuclearity, the ratio of jobs in the CBD to all jobs in any job cluster.

Among the fifty urbanized areas they studied, they found that there were a number of

variations of type of sprawl in terms of which of these axes they were higher or lower on.

This suggests that there is not a single type of sprawl or sprawling city, but a wide variety

of different sorts of sprawl.

In a follow-up study, Cutsinger and Galster (2006) performed a cluster analysis on

the same fifty metropolitan areas and came up with four clusters or “types” of cities based

on land-use patterns in 1990:

• dense, deconcentrated, with high job and housing density, high continuity of de-

veloped land, low proximity of jobs and housing, low concentration of jobs in the

CBD, and high mixed use. These cities have a mixture of traits generally seen as

sprawling and non-sprawling.

• leapfrog, with high job concentration but low housing and job density, low continu-

ity, mixed use, and housing centrality, concentration, and proximity. Although they

have concentrated job clusters, they generally are very sprawling and have larger

gaps of vacant land between development.
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• compact, core dominant, which have high job nuclearity and housing and job cen-

trality, concentration, and proximity. Despite these non-sprawl-like features, they

are much less dense and have low levels of continuity than the dense, deconcen-

trated metropolitan areas.

• dispersed, which are not statistically distinguishable from the cities studied as a

whole, but which have a generally dispersed distribution of jobs and housing.

Sarzynski et al. (2014a) continued this line of analysis on all 257 United States

metropolitan areas as of the 1990 and 2000 Decennial Censuses. They found that the

EUAs studied became more employment-dense, but jobs became more dispersed and less

concentrated. This deconcentration of metropolitan employment has been an ongoing pat-

tern of American urban areas since the 1950’s, as documented by Chatterjee and Carlino

(2001).

While population distribution changed less, it followed the same basic pattern: while

employment and population density increased from 1990 to 2000, they found that every

other index of sprawl they measured became more sprawl-like over the period. In addition,

the differences between metropolitan areas generally became less distinct.

In a companion article, Sarzynski et al. (2014b) essentially repeated Cutsinger and

Galster (2006)’s analysis, but this time using 2000 Deccenial Census data. They also

analyzed a number of geographic, historical, economic, demographic, and transportation

variables as the basis of an exploratory analysis between these variables and land use

characteristics.
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As with Cutsinger and Galster (2006), Sarzynski et al. (2014b) found four distinct

clusters of metropolitan areas based on land-use patterns. However, their clusters were

somewhat different:

• Ascendants (most-intensive, least-compact, least-mixed, more-monocentric) was the

largest cluster, consisting largely of large, young, and fast-growing areas. Nearly half

were located in the South census region.

• Insulars (less-intensive, most-compact, less-mixed, less-monocentric) consisted of

small, young, slow-growing metro areas below one million residents with locally

oriented economies. They tended to be inland, have disproportionately high Black

populations and low immigrant populations. About half were in the South census

region.

• Redevelopers (least-intensive, less-compact, most-mixed, most-monocentric) con-

sisted of smaller, older, predominantly white areas with central cities that have de-

clined. The plurality of them were located in the Northeast census region.

• Cosmopolitans (more-intensive, more-compact, more-mixed, polycentric) consisted

of, on average, the oldest and largest metropolitan areas, had the strongest economic

indicators and highest population of Latinx and foreign-born residents. They also

tended to have relatively good transit, including rail.

51



Sarzynski et al. (2014b) also noted that, while the clusters were distinctive in terms of

Black and non-Latinx white percentages of the population, percentage of Latinx residents

did not appear to be distinctive, and suggested that this might be due to sprawl being driven

by forces related to Black-white segregation. This is consistent with Galster and Cutsinger

(2007)’s more detailed study of the connection between sprawl and segregation.

1.3.5 Analyzing Street Networks

An alternative to the traditional approach of typologizing metropolitan areas based

on their distributions of population and jobs is to base one’s analysis on the structure of

the street networks along which these populations and jobs are distributed.

Because, as noted by Marshall (2005) in his detailed study of street networks from

an urbanist, architectural perspective, the basic structure of street networks changed with

the introduction of the automobile, analyzing it can potentially be an effective proxy for a

fuller measurement of the pedestrian-friendliness of a neighborhood.

Marshall explains that while traditional (pre-automobile) cities were designed with

the same streets serving as the most central urban “places” and as the primary arteries for

travel, modernist attempts to redesign the city for cars inverted this relationship, centering

primary arteries for travel that would discourage or forbid pedestrians and street-fronting

businesses while making urban places into tranquil backwaters accessed by side roads or

long driveways. This has led many governments’ roadway agencies to organize streets into

hierarchies where the highest-level streets are dedicated to fast car movement and only the

lowest-level consider pedestrians and street-fronting uses.
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Marshall (2005, 83-89) attempts to establish a typology of four forms of street net-

works that correspond to different technological and planning eras:

• A-type street networks have irregular, fine-scale angular streets, most of which are

short or crooked, varying in width and going in all directions. They have a mixture

of T- and X-junctions and some cul-de-sacs, with moderate connectivity.

• B-type street networks have regular, rectilinear streets of consistent width with con-

tinuous cross-roads and X-junctions, and have high connectivity.

• C-type street networks have a mixture of regularity and irregularity, with streets

largely of consistent width. Roads have curved or rectilinear formations, but largely

meet at right angles, and have a mix of T- and X-junctions with some cul-de-sacs

and moderate connectivity.

• D-type street networks are based on consistent road geometry and arterial roads.

They have curvilinear or rectilinear formations and mostly meet at right angles, with

mostly T-junctions, many cul-de-sacs, and generally tree-like low-connectivity for-

mations.

A-type street networks are the result of unplanned pedestrian-area development, and are

mostly only found in the US in a few colonial-era historic cores, such as downtown Boston.

B-type networks are associated with planned cities from the pedestrian and sometimes

streetcar eras, while C-type networks are associated with the public transportation and

early car eras and D-type networks with the later car era.
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While Marshall’s typology is fundamentally qualitative, the past fifteen years have

seen a number of attempts to develop more quantitative typologies of street networks.

Lämmer et al. (2006) studied of road networks in German cities taking into account road

speeds to show that the shortest driving time between two points is particularly likely

to pass through a few major arterials and intersections. This can potentially be used to

develop an understanding of the hierarchy of the road network. However, it is perhaps less

useful for assessing walkability and amenability to transit: for those purposes, road speeds

are likely unimportant except as a means of excluding highways from one’s model of the

walkable grid.

Another approach, taken by Cardillo et al. (2006) is to analyze street grids by count-

ing the number of nodes (intersections and dead-ends), the number of block edges, total

length of edges, and average length of edges. They studied districts of several world cities

and found significant variation among cities and also among neighborhoods in the one city

where they looked at multiple neighborhoods. They also measured the “efficiency” of the

street grids, effectively defined as the average ratio between Euclidean distance and grid

distance between any two nodes on the grid:

E =
1

N(N − 1)

∑
i,j,i6=j

dEuclideanij

dij

where dij is the network distance between nodes i and j, dEuclideanij is the Euclidean

distance between those two nodes, and N is the total number of nodes. While this paper

is very mathematical and focused on describing methods of analysis, it does not discuss

connections to demographics or the walkability of a given sort of street grid.
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Some researchers have attempted to include these sorts of measures as part of larger

models of urban environments. For example, Fan (2010) used miles of sidewalks and the

“percentage of intersections that are not dead-ends,” which I take to be the percentage

of nodes that are not dead-ends, as components in her study of regions of the “Research

Triangle” metropolitan area in North Carolina.

A more explicit attempt to identify types of street grid that coexist within American

cities was made by Talen et al. (2018), who used the street grid and aerial photograph

data on the built environment to typologize types of built environment in Census blocks

in several American cities, coming up with roughly thirty types. They then looked at how

these types of built environment correlated with demographic factors and particularly with

racial diversity.

The authors found that there is generally a consistent ordering of types of built en-

vironment by density between cities, but the density of a given environment could vary

significantly between cities. They also found that more sprawling types of environment

consistently correlated with lower diversity and more-traditional family structures. How-

ever, their technique requires the investigators to classify built environment by hand, and

so may not be applicable to a study of a large number of cities.

In the last decade, a group of researchers led by Barthelemy at the Center of Social

Analysis and Mathematics of the Ecole des Hautes Etudes en Sciences Sociales in Paris

have been working on an alternate approach, analyzing street networks based on the shapes

and sizes of city blocks. In Barthelemy et al. (2013), they introduced their approach of

analyzing block sizes and shapes rather than street segment lengths. This method was

motivated by an attempt to understand how Baron Haussmann’s redesign of Paris during
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the French Second Empire fundamentally changed the street network, despite not signif-

icantly changing the results of a nodal analysis of the street network. They showed that

Haussman’s redesign did significantly change the centrality of the street network: the set

of nodes that show up on a disproportionate number of the shortest paths between pairs of

other nodes. They also analyzed the change to the form factor of blocks (Lämmer et al.,

2006), defined as the ratio of the area of the block and the area of a circumscribed circle:

φ =
4A

πD2

where D is the maximum distance between two points on the circumference of the block

and A is the area of the block.

In Louf and Barthelemy (2014b), the method is elaborated on: using both φ and A

to classify blocks, the authors defined the “fingerprint” of a street grid as the conditional

probability distribution P (φ|Abin)P (Abin) with Abin an area bin. They found that two

cities have visually similar street networks if the shape distributions for each area bin are

very similar between the two cities.

Since the vast majority of city blocks (though not necessarily the vast majority of

land in the city), have areas between 103 and 105 m2, they neglected blocks outside of this

range and used only two bins,

α1 = {blocks |A ∈ [103 m2, 104 m2]}
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and

α2 = {blocks |A ∈ [104 m2, 105 m2]}

They then defined fα(φ) as the ratio of cells in bin α that have form factor φ to the to-

tal number of cells in the city. With two bins, this gave a fingerprint consisting of two

functions fα(φ) for a given city.

Using this analysis, the authors found several “types” of cities, and typological dif-

ferences between most American and essentially all European cities. They also found

differences between boroughs in New York City. Unfortunately, they do not draw any

direct connections between these types and “on the ground” urban environment.

Barthelemy (2017) extends the method in Louf and Barthelemy (2014b) and defines

a simplicity index, defined as the average ratio of the lengths of the simplest to shortest

route and finds that for artificial networks, it generally has a maximum at an intermediate

scale, with one peak in simplicity index as a function of distance for monocentric networks

and multiple peaks for polycentric networks, which might pose an interesting way to an-

alyze street grids for polycentricity. This approach is not limited to Barthelemy’s group,

however: Riascos (2017) performed a similar analysis using lot size rather than block size.

One difficulty in performing street network analyses is sourcing high-quality, accu-

rate street network shapefiles. This is particularly important for some sorts of analyses:

for example, a road network shapefile that represents single X-junction intersections as

pairs of T-junction intersections will frustrate attempts to analyze street networks by in-
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tersection type. The OSMnx Python package developed by Boeing (2017a,b) provides a

method to simplify street network shapefiles downloaded from the OpenStreetMap open-

source worldwide road-mapping project.

Further work by Boeing (2018, 2019a,b,c, 2020a,b,c) has identified patterns between

different measures of street network order, found difference between driving and walk-

ing networks in American cities, identified temporal patterns in American street network

design—including a return to more gridded street networks in the past two decades—and

compiled measures of street networks at the Census tract level throughout the US.
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Chapter 2: Characterizing Neighborhoods

The first step in developing a typology of metropolitan areas by neighborhood types

is to define and characterize the neighborhoods themselves. This requires making choices

about the definition of metropolitan area to work with and dealing with the slippery ques-

tion of what counts as a “neighborhood.” It also involves selecting data sources to quantify

the land-use, economic, transportation, and social conditions that determine the feel and

vitality of a place. To be useful, these data sources need to be available at a national level,

so that comparable data will be available in all metro areas studied.

In this chapter, I discuss several options for defining metropolitan areas (Section 2.1)

and my choice to use the US Office of Management and Budget’s Core-Based Statistical

Area definitions (Section 2.2). I then discuss my choice to establish grids of hexagonal

cells as the spatial units for my neighborhood analysis (Section 2.3) and the process of

selecting data for use in characterizing these neighborhoods (Section 2.4). Finally, I cover

the process of aggregating this data into the neighborhood cells (Section 2.5) and the re-

sults of characterizing them (Section 2.6).
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A list of the metropolitan areas analyzed can be found in Appendix A; details on the

data sources used are given in Appendix B; and details on methodology used in analysis

can be found in Appendix C. The source code for the R scripts used is available in UMBC’s

online ScholarWorks repository.

2.1 Options for Defining Metropolitan Areas

A fundamental problem with studying American metropolitan areas is that there is

significant ambiguity in what “metropolitan area” means. Whether the car-driven reduc-

tion in metropolitan area density is a good or a bad thing, as Bryan et al. (2007, 342-346)

notes, the population density of a city or metropolitan area depends strongly on where the

city’s boundaries are drawn. In the United States, there are three real options for defining

the boundaries of a metropolitan area: the legal boundaries of the primary city, theUrban-

ized Area (UA) as defined by the Census Bureau based on a minimum density criterion

(US Census Bureau, 1994, Ch. 12), and the Metropolitan Statistical Area (MSA), a col-

lection of counties defined by the Office of Management and Budget based on commuting

to the central city (US Office of Management and Budget, 2010).

While city boundaries are important for understanding issues of governance, they are

often arbitrary in what areas they include, and their expansiveness varies significantly be-

tween metropolitan areas, due to differences in local politics and state regulatory regimes

that make it easier or harder for cities to annex their suburbs. Furthermore, enough of

the population and jobs in metropolitan areas are outside the central cities that a study of

public transportation which excludes suburbs would be effectively useless.
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2.1.1 Urbanized Areas

One alternative to using legal city limits is defining metropolitan areas as theUrban-

ized Areas (UAs) and Urban Clusters (UCs) established by the Census Bureau based on

a minimum density criterion. Although a new set of boundaries for UAs is defined after

each Decennial Census, the basic rules for establishing them reached their current form in

1990 (US Census Bureau, 1994, Ch. 12).

Urbanized areas and urban clusters are defined as collections of Census block groups

consisting of an urban core with a population density of at least 2,500 people per square

mile and a contiguous fringe with a density of at least 1,000 people per square mile. There

are special exceptions allowing for jumps, non-residential urban land use such as parks and

industrial development, and non-developable areas such as open water, swamps, and steep

slopes. The only distinction between urbanized areas and urban clusters is population:

urbanized areas must have populations of at least 50,000 residents and urban clusters must

have populations between 10,000 and 49,999 residents.

In regions of the country with relatively continuous settlement, UAs and UCs can

provide a relatively good description of built-up areas. However, in other areas, particu-

larly where development is geographically constrained by steep hills or surface water, the

continuity requirement can lead to the division of areas with deeply integrated economies

into multiple distinct UAs and UCs. For example, the Concord, California urbanized area

is separated from the San Francisco-Oakland, California urbanized area by the steep and
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largely undeveloped Berkeley Hills, but the Concord UA largely consists of suburbs of San

Francisco and Oakland and is served by two lines of San Francisco’s BART rapid transit

system.

In addition, using UAs and UCs raises another issue: the fact that an increasing

fraction of the population and jobs in metropolitan areas are found in exurban areas beyond

UA boundaries, and not all metropolitan areas have the same fraction of their residents and

jobs within their UA or UC. This is a consequence of the tendency of American land use

to progress toward greater and greater sprawl and lower-density settlement, and excluding

part of a city’s commuter-shed from its metropolitan area based on a density cut-off would

defeat the purpose of measuring the density distribution and sprawl of population and jobs.

2.1.2 Core-Based Statistical Areas

A more useful way to construct metropolitan areas is to examine economic integra-

tion and commuter flows. The Census Bureau began defining metropolitan districts using

this technique for the 1910 Decennial Census. However, these early definitions were not

commonly used by government agencies or organizations outside the Census Bureau and

in 1949, the Bureau of the Budget (predecessor to the current Office of Management and

Budget, OMB) defined Standard Metropolitan Areas for use by all Federal government

agencies. An updated version of these areas, now called Core-Based Statistical Areas

(CBSAs) and divided into Metropolitan Statistical Areas (MSAs) and Micropolitan Sta-
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tistical Areas (µSAs), are still defined by the OMB after each Decennial Census (US Cen-

sus Bureau, 2019b). The OMB notice that gives the current criteria for defining CBSAs

describes their purpose as:

The general concept of a metropolitan statistical area is that of an area con-

taining a large population nucleus and adjacent communities that have a high

degree of integration with that nucleus. The concept of a micropolitan statisti-

cal area closely parallels that of the metropolitan statistical area, but a microp-

olitan statistical area features a smaller nucleus. (US Office of Management

and Budget, 2010, 37246)

Core-based statistical areas are defined based on urbanized areas and urban clusters

and consist of central counties that have at least 50% of their population in UAs and UCs

or a population of at least 5,000 people located in a single UA or UC and outlying counties

where either 25% of the workers living in the county work in the central counties of the

CBSA or 25% of the jobs in the county are held by workers from the central counties of the

CBSA. A CBSA containing at least one urbanized area is a metropolitan statistical area,

while a CBSA containing only urban clusters is a micropolitan statistical area.

Since MSAs and µSAs are defined as collections of counties, they contain both rural

and urban areas and may vary greatly in the amount of outlying land they contain, depend-

ing on the geographic size of counties in the states where they are located. For example,

the Riverside–San Bernardino–Ontario MSA consists of Riverside and San Bernardino
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Counties in southern California. Nearly all of the MSA’s 4 million people live in the far

western portion of these counties, but the counties themselves extend roughly 200 miles

across the Mojave Desert to the state’s border with Arizona and Nevada.

Furthermore, in areas of the country with a high level of urbanization, they often

border each other along county borders, despite these being essentially arbitrary. Two

MSAs or µSAs are merged if the central county or counties of one of them qualify as

outlying counties for the other; this means it is possible for quite a large number of people

to commute between two distinct µSAs, particularly if both have large, similarly-sized core

areas.

2.1.3 Combined Statistical Areas

In addition to Metropolitan Statistical Areas, OMB also defines Combined Statis-

tical Areas (CSAs), consisting of multiple adjacent MSAs and µSAs with employment

interchange of at least 15%. Not all MSAs and µSAs are included in a CSA but, for those

that are, these provide a broader model of metropolitan area sprawl.

One difficulty with using CSAs, however, is that not all metropolitan areas are within

one, and the USOffice ofManagement and Budget (2018) recommends against comparing

them with individual MSAs: “Because combined statistical areas represent groupings of

metropolitan and micropolitan statistical areas (in any combination), they should not be

ranked or compared with individual metropolitan and micropolitan Statistical Areas.”
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A case can be made that combining them specifically with those MSAs that are

not part of any MSA may make sense, since MSAs not in any CSA are those metropolitan

areaswithout any outlyingmetropolitan sprawl that would qualify for delineation as a CSA.

However, it is possible that a MSA not in a CSA could have potential outlying counties that

would qualify for inclusion by the 15% employment interchange standard used for CSAs,

but not the 25% standard used for MSAs.

An additional difficulty, which cuts both ways, is the case of CSAs which contain

two arguably distinct metropolitan areas. Boston and Providence, which are historically

distinct and significant metropolitan areas, and which are separate MSAs, are combined

in the same CSA. Baltimore and Washington, which perhaps have even stronger claims to

be separate metropolitan areas, are also separate MSAs combined into one CSA. On the

other hand, the two largest CSAs in California both combined pairs of large MSAs that

probably should be thought of as part of the same metropolitan area: Los Angeles and the

Inland Empire and, more arguably, San Francisco and San Jose.

2.1.4 Other Approaches

While most researchers studying American metropolitan areas use either urbanized

areas or core-based statistical areas, a collection of papers by researchers at Wayne State

University use what Wolman et al. (2005) called Extended Urban Areas (EUAs). These

authors used satellite imagery and the National Land Cover Database (NLCD) to measure

sprawl in several major metro areas and to argue that the choice of what land to include

strongly influenced the results.
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However, while they could find no theoretical justification for a specific choice of

land to include, they proposed a unit they refer to as the extended urban area of a metropoli-

tan area:

The Census Bureau-defined urbanized area, modified to follow census tract

boundaries, as well as additional ‘outlying’ one mile square grid cells that

contain 60 or more dwelling units (identified using data at the census block

level), and are located in a census tract from which at least 30 percent of the

workers commute to the urbanized area. (Wolman et al., 2005, 96)

This definition, with its focus on a grid pattern of cells, was designed to be com-

patible with their use of raster land cover data as a major part of their analyses, and their

conversion of demographic data to rasters to simplify computations. However, the basic

idea of allowing lower-density land to be included if it meets a commuting standard seems

reasonably sound.
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2.2 Using CBSAs to Study Metropolitan Areas

While using a special-purpose definition of metropolitan areas, as done by Wolman

et al. (2005), has significant benefits in a study specifically aiming to measure sprawl, it

has significant downsides as well. It requires an initial pre-processing step to establish

metropolitan area boundaries before further analysis can be done. Furthermore, and more

seriously, an analysis done with non-standard metropolitan area definitions will be less

comparable with results from other studies.

Because of these issues, I decided to use the core-based statistical areas established

by the US Office of Management and Budget as my basic units for studying US metropoli-

tan areas. For the purposes of this study, “metropolitan areas” will mean the 926 core-

based statistical areas (both MSAs and µSAs) in the United States excluding Puerto Rico

as established by US Office of Management and Budget Bulletin No. 18-04 in September

2018.

It should be noted that these definitions were superseded by updated definitions is-

sued in March 2020. However, the changes are minor: the March 2020 definitions add one

new micropolitan statistical area, the Bluffton, IN Micropolitan Statistical Area, consist-

ing of Wells County, Indiana and add this µSA to the Fort Wayne-Huntington-Auburn, IN

Combined Statistical Area (US Office of Management and Budget, 2020).
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2.2.1 Exclusion of Puerto Rican Metropolitan Areas

In addition to the core-based statistical areas in the incorporated United States, con-

sisting of the fifty states and the District of Columbia, the Office of Management and Bud-

get also defines eight metropolitan statistical areas and four micropolitan statistical areas

in Puerto Rico. These metropolitan areas were excluded from this study for two reasons.

First, I was uncertain about the comparability of Puerto Rican and mainland Amer-

ican metropolitan areas. Puerto Rico has significantly lower income than even the poorest

of US states, which is likely to have a significant impact on land use and development

patterns. Furthermore, the commonwealth’s distinct legal and cultural history, and limited

migration from the mainland US, make it unclear whether the rather unique American

approach to land-use planning described by Hirt (2014) extends there.

A second, and more important, concern is that many of the data sources I used are

not available for Puerto Rico. The most recent National Land Cover Database land cover

data for Puerto Rico available for download is from 2001, while 2005 data is available for

Hawaii, 2011 data is available for Alaska, and 2016 data is available for the contiguous

United States. Furthermore, the Census Bureau’s Longitudinal Employer-Household Dy-

namics program’s LODES job location data, which I used to characterize land use, is not

available for Puerto Rico for any year.
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2.2.2 Selecting Coordinate Reference Systems for Metro Areas

A number of the steps in characterizing neighborhoods require accurate area and

distance measurements. These measurements are needed to calculate population densi-

ties, measure walksheds, and so forth, and require a choice of planar coordinate reference

system (CRS) that does not distort distances locally.

While it was obvious that separate CRS projections would be necessary for Hawaii,

Alaska, and the contiguous US, I had initially hoped that a single choice of CRS would

provide sufficiently little distortion to allow for accurate measurements, particularly for

walkshed calculations.

After determining that a contiguous US Lambert Conformal Conic projection had

too much variation, I used state plane CRS systems for my earlier walkshed work (Row-

lands, 2020). However, state planes were not a viable option for this project, because there

is no easy way to automate the process of identifying which state plane to use for each

of the 926 metropolitan areas studied. In addition, larger CBSAs can span multiple state

planes.

Universal Transverse Mercator (UTM) projections provide a good solution to these

problems: the UTM system divides Earth into sixty zones, each of which is 6◦ wide and

assigned a transverse Mercator projection based on its central meridian. Transverse Mer-

cator projections are fairly robust and provide an accuracy of better than 1% even several

degrees outside their assigned UTM zone, which means that metro areas that cross UTM

zone borders do not pose an issue.
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Figure 2.1: A map of core-based statistical areas color-coded by the UTM
zone they were assigned. Combined statistical areas (outlined in bold) are
kept in the same UTM zone even when this leads to non-optimal placement
of some of their CBSAs.
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Core-based statistical areas were assigned to the UTM zone in which their center of

population or primary city was located. To allow for consistent mapping of entire com-

bined statistical areas, all CBSAs in the same combined statistical area were assigned the

same UTM projection. These assignments are shown in Figure 2.1 on page 70 and listed

in Appendix A.
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2.3 Establishing Standard Neighborhoods for Study

While it is a commonplace that nearly every major city is described from time to

time as “a city of neighborhoods,” these neighborhoods are often more matters of local

geographic understanding than formally defined and named areas. Even in those cities

where they are given official borders, the standards for what qualifies as a neighborhood

vary between cities. Furthermore, as noted by Taylor (2012), residents’ perceptions of

neighborhoods often have overlapping borders, and different scales of proximity are rele-

vant for different purposes.

To usefully typologize neighborhoods nationally, however, the neighborhoods need

to be disjoint, comparable entities similarly defined between metropolitan areas. Further-

more, since the goal is to identify and classify walkable, urban, non-automobile-dominated

places, the neighborhoods used need to be small enough that they can easily be crossed on

foot and are likely to be reasonably thought of as unified places by pedestrians.

2.3.1 Choice of Spatial Units for Neighborhood Analysis

The most obvious choice for comparing neighborhood-sized areas across metropoli-

tan areas is to use Census tracts or block groups. Census tracts are intended to be relatively

stable geographic entities, thoughmany of them are divided ormerged for each newDecen-

nial Census. Tracts are generally constructed to have between 2,500 and 8,000 residents,

which means that their physical size varies substantially between urban, suburban, and
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exurban areas. Block groups are subdivisions of tracts intended to be more homogeneous

in use, and they suffer from the same issue of vastly different sizes in areas with different

population densities (US Census Bureau, 1994, Ch. 10-11).

Using the large tracts and block groups in suburban and exurban areas as “neigh-

borhoods” would defeat the purpose of using higher-resolution data sources, such as the

National Land Cover Database—which presents data in 30-meter by 30-meter pixels—to

characterize neighborhoods. It would also be problematic from the point of view of a study

of neighborhood walkability, since such areas are much larger than the areas pedestrians

typically cover on foot even in very walkable environments.

An additional issue with using Census tracts or block groups for spatial analysis is

that the results of spatial analysis can depend strongly on the choice of analysis units, an

effect known as the Modifiable Areal Unit Problem (MAUP). This problem really consists

of two separate issues: the scale effect and the zoning effect. Using larger-scale spatial

units for analysis can disguise heterogeneity at smaller scales and can turn small negative

spatial correlations into positive correlations. Furthermore, the choice of zoning—where

to draw the borders of spatial units—can significantly alter results if the underlying phe-

nomenon being measured has a non-random spatial distribution (Wong, 2009).

Since the boundaries of these Census geographies are fundamentally arbitrary, and

vary in size with the sort and density of the area they cover, they are a particularly poor

choice for spatial analysis. Using a grid of identically-sized units for neighborhood anal-

ysis reduces the scale-effect issue to the choice of the best scale for studying the effects of

interest.
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Previous studies of commute patterns and travel mode choice have found that rel-

atively small-scale analysis units are preferable. In work on commute patterns in Boise,

Idaho, Horner and Murray (2002) argued for aggregating data at the smallest level possi-

ble. A much more detailed analysis of the MAUP in the context of urban form, however,

was conducted by Zhang and Kukadia (2005).

Zhang and Kukadia found significant MAUP effects in measures of urban form and

mode choice, and concluded that spatial units be selected based on behavior-based prop-

erties. In particular, grids of cells with radii approximating 400-m—the radius of the

conventionally-used “transportation impact area”—and reflecting the size of area where

pedestrian travel dominates. This is also the size, Talen (2019, 55-56) notes, that New Ur-

banists and earlier Twentieth Century planners considered the maximum size for a walka-

ble neighborhood.

Based on these findings, I chose a hexagonal grid with a hexagon radius of 400

meters as the spatial unit for my neighborhood analysis. A hexagonal grid, rather than the

more common square grid, was chosen to better approximate the circular transportation

impact area.

2.3.2 Creating Hexagonal Cell Neighborhoods

Once the decision to use hexagonal (hex) cells as the spatial analysis unit for neigh-

borhoods was made, it was necessary to actually create the cells. The process for doing so

is described in broad strokes in this section, but more technical details and the R scripts

used can be found in Appendix C, Section C.1.
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Ideally, several offset sets of cells would have been created and analyzed separately

to account for the zoning effect of the MAUP. However, the amount of computation time

needed to perform the analysis made it impractical to repeat it several times for offset hex

cells.

Census Bureau shapefiles for each CBSA in the US were downloaded and divided

up by UTM zone as discussed in Section 2.2.2. All CBSAs in a given UTM zone were

transformed to that zone’s UTM coordinate system and a single hexagonal grid with a side

length and radius of 400 meters. The grids were then divided into separate files for each

CBSA, with hexagons split by a CBSA boundary divided into two partial hexagons, one

for each CBSA.

Once the hex cell grids were created, one additional step was needed before data

could be aggregated into them to characterize them: water areas needed to be removed, as

the CBSA definition shapefiles used include major bodies of water, including rivers, bays,

and the Great Lakes.

However, the question of whichwater features should be removed is somewhat more

complicated, since the Census-provided water area shapefiles which were used contain

small streams and ponds as well as larger water features. While cropping the hex grids to

the boundaries of major bodies of water should not seriously effect the analysis, removing

all small water features potentially raises the observed density of development in cells by

lowering their measured area without reducing the total area that they encompass.

In addition, the Census water shapefiles seem to be inconsistent in their representa-

tion of small bodies of water: in some counties, many small bodies of water are shown,

while almost none are shown in neighboring counties with similar underlying geology
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Figure 2.2: A map the hexagonal cells in part of the Baltimore-Columbia-
Towson, MD Metropolitan Statistical Area with water features removed.
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and topography.1 To take into account both these issues, all water features with areas of

less than 100,000 square meters—roughly one quarter of the area of one of the hexagonal

cells—were removed from the water shapefiles before water features were removed from

the hex cells.

Finally, to avoid either saving very small residual cells, which would be too small

for useful statistics, or wasting processing time and memory space on the removal of very

small areas from cells, the processing of the cells was handled differently depending on

the amount of water to be removed from a cell. If 85% or more of the area of a cell was

water, the cell was completely deleted, while if 15% or less of the cell was water, no water

area was removed from the cell. However, water areas were removed from cells if between

15% and 85% of their area was water. An example of the results of this process can be

seen in Figure 2.2 on page 76.

1For example, a large number of small ponds are shown in Prince George’s County, Maryland on the
west side of the Patuxent River, while none are shown in Anne Arundel County, Maryland on the eastern
side.
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2.4 Review of Available Data Sources

Directly measuring the vitality and walkability of a neighborhood would likely re-

quire surveys of residents or direct observation by researchers, neither of which is a viable

option at a national scale. Instead, data sources covering the entire United States were

selected to measure the traits most generally believed to be essential for walkable, vital

neighborhoods: density, mixture of use and building types, and pedestrian-friendly street

networks. Five data sources were chosen to provide a fairly basic characterization of neigh-

borhoods, although others (discussed in Section 2.4.4) have potential merit for inclusion

in further work.

Density was measured in terms of activity units—number of residents plus jobs,

as per Newman and Kenworthy (2006)—using data from the Census Bureau’s Ameri-

can Community Survey (ACS) and Longitudinal Employer-Household Dynamics (LEHD)

programs. Mixture of use was measured using ratios of residents and jobs in different

industries from these same sources. Mixture of building types, and building types in gen-

eral, could not be directly measured, but numbers of housing units in different building

types—also from the ACS—and percentage of developed land—from the USGS National

Land Cover Database (NLCD)—were used as proxies. And, for road network connec-

tivity, measurements were derived from street networks reported by the OpenStreetMap

(OSM) project.
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2.4.1 Census Bureau Data

The largest source of data for characterizing neighborhoods was the US Census Bu-

reau, which also provided the TigerLine shapefiles of Census geographies (blocks and

block groups), water areas, and core-based statistical areas used in data processing and

the creation of maps. Datasets from two major Census programs were used: the American

Community Survey (ACS) and the Longitudinal Employer-Household Dynamics (LEHD)

program.

The ACS, which began in 2006, is a continuous program conducted by the Census

Bureau to collect more detailed data than is included in the Decennial Census every ten

years. This data, which was traditionally collected via the long-form questionnaire sent

to a fraction of households each Decennial Census, was moved to a separate program for

two reasons: to allow for more continuous data collection, and to prevent lower response

rates to the long-form questionnaire from suppressing Decennial Census responses.

Unlike the Decennial Census, ACS results are produced by statistical sampling.

Surveys are sent to approximately three million households each year, and the highest-

precision results, the five-year samples, estimate values for the reported year based on that

year’s sample and samples from the four previous years. Because of the statistical nature

of the results, they are not available at the Census block level (US Census Bureau, 2014).
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Block-group-level 2018 ACS five-year estimates were used as a source for several

datasets used to characterize neighborhoods. Total population and number of housing units

by type of structure (i.e. detached single-family homes, attached single-family homes,

mobile homes, and various sizes of apartment building) were used in the initial character-

ization and to develop neighborhood clusters.

In addition, data on population by race, median household income, transportation

modes for commuting to work, and available cars per household were collected for poten-

tial use in typologizing metropolitan areas by the demographics of different neighborhood

types. More details on the ACS data collected can be found in Appendix B, Section B.1.

Demographic data was excluded from the initial neighborhood and metro area ty-

pologies because the goal of these typologies is to understand the built environments avail-

able in different neighborhoods and metro areas independent of demographics. Keeping

the built environment typologies independent of demographics allows for later study of

the demographics with access to different neighborhood types and to similar neighbor-

hood types in different metropolitan areas.

The Longitudinal Employer-Household Dynamics is a program of the Census Bu-

reau’s Center for Economic Studies that combines Federal and state data on employers and

employees with Census data to produce datasets related to employment and economics.

One of these datasets, LEHD Origin-Destination Employment Statistics (LODES), con-

tains data on the locations of jobs (US Census Bureau, 2021a).
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Although the LODES dataset has some weaknesses—it excludes national-security-

related Federal jobs; available data is somewhat less recent than ACS data; and there are

errors in location assignment for some jobs—it is a relatively accurate source on the den-

sity of jobs and their distribution by income and industrial sector at the Census block level

(US Census Bureau, 2019c).

LEHD data on the number of jobs in two-digit North American Industry Classi-

fication System (NAICS) industrial sectors was used in the initial characterization and

typologization of neighborhoods. Data on the number of jobs in three income bands was

also collected for potential use in the development of demographic-based metro area ty-

pologies. Appendix B.2 contains technical information about this data.

2.4.2 Other Sources of Federal Data

Although the Census Bureau is the best known source of Federal government data

on the built environment, two other Federal data sources were used to supplement the

Census’s ACS and LODES datasets: the National Land Cover Database (NLCD) and the

National Transportation Atlas Database (NTAD).

The NLCD is a project of the US Geological Survey (USGS), with assistance from

several other Federal agencies, to produce an atlas of land cover types in the United States

derived from remote-sensing imagery from the Landsat constellation of satellites. Al-

though the project primarily focuses on identifying different types of natural and agricul-

tural land cover, developed land is also identified with relatively high accuracy. NLCD
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data is provided as rasters with a 30-meter by 30-meter pixel size, which offers signifi-

cantly higher resolution than the Census block group and block geographies available for

ACS and LEHD data (Yang et al., 2018; Homer et al., 2015).

Figure 2.3 on page 83 shows raw NLCD data for Baltimore, color-coded in the

NLCD’s default color scheme, with developed land indicated in shades of red. The ur-

ban core is nearly continuously coded as developed, while major radial roads are visible

as long, narrow strands of developed land.

NLCD data was used for two purposes in this project: to characterize the built form

of neighborhoods in terms of their fraction of developed land, and to increase the effective

resolution of the ACS and LEHD data. Pixels containing at least 20% developed land

were coded as developed and used to calculate the fraction of developed land in each

neighborhood hex cell.

Large tracts of undeveloped land identified in the NLCD data were also removed

from the Census block and block group geometries for the Census data. This was in-

tended to correct for the fact that suburban and exurban Census blocks and block groups

often contain large areas of empty land, lowering the apparent density of their developed

portions. More details on the specific NLCD datasets used can be found in Appendix B.3

The United States Bureau of Transportation Statistics (BTS) maintains the NTAD, a

set of several dozen nationwide GIS databases of “transportation facilities, transportation

networks, and associated infrastructure” (US Bureau of Transportation Statistics, 2021).

Although this datamostly consists of transportation infrastructure and administrative bound-

aries, it also contains a dataset (US Bureau of Transportation Statistics, 2019) of borders

of military bases and related Department of Defense facilities.
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Figure 2.3: A map of raw National Land Cover Database data for part of the
Baltimore-Columbia-Towson, MD Metropolitan Statistical Area. Developed
land is shown in shades of red.
(US Geologic Survey, 2020)
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The NTADmilitary base data was used to remove hex cells located on military bases

from analysis. These cells were removed due to two concerns: first, that the exclusion

of military and national-security jobs from LEHD data meant that density and use-type

calculations for these areas would necessarily be inaccurate and, second, that the high

security of and exclusion of the general public from military bases make them inherently

non-urban facilities. Details on the use of this data can be found in Appendix B.4.

2.4.3 Road Network Shapefiles

The structure of the road network is an important component of walkable, vital urban

places. As such, it is important to characterize the street network in neighborhoods as

part of characterizing the neighborhoods. While numerous methods have been developed

to characterize street networks (Boeing, 2019b), all of them require GIS data on road

networks as a starting point.

Furthermore, for the purpose of characterizing walkability, what we actually care

about is the network of walkable paths, which includes some things that are not roads—off-

road shared-use trails and paths in pedestrianized areas—but excludes roads along which it

is illegal—i.e. the Interstate Highway System—or unsafe—i.e. high-speed roads without

sidewalks—to walk.
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While the Census Bureau does produce TigerLine shapefiles of the US road network,

they are missing many pedestrian-only paths, and they provide only very limited options

for eliminating non-walkable roads. Fully grade-separated freeways can be identified, but

not largely-but-not-entirely grade-separated highways or other high-speed roads that are

very unlikely to have sidewalks.

The open-source web-mapping project OpenStreetMap (OSM) provides a better al-

ternative for mapping the road networks in US cities. Its US road network is based on

2005 Census TigerLine shapefiles (Boeing, 2019b), but additional pedestrian paths have

been added in many metropolitan areas and freeways and freeway-like roads have been

identified and removed, as seen in Figure 2.4 on page 86.

Road network characterization of neighborhoods for this project was based on Ge-

ofabrik GmbH (2020) data-dumps of the OSM road network for the US. Details on the

OSM data imported and the choice of road types to include in analyses are given in Ap-

pendix B.5.

2.4.4 Other Possible Data Sources

Characterization of neighborhoods for this project was limited to the five data sources

discussed in the preceding pages. However, there are a number of other data sources of

potential interest for similar work that seem worth mentioning here.
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Figure 2.4: The OpenStreetMap street network in part of the Baltimore-
Columbia-Towson, MD Metropolitan Statistical Area. Roads identified as
non-walkable are highlighted in red.
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In addition to Census, NLCD, and NTAD data, other Federal agencies produce

datasets relevant to the characterization of neighborhoods: the US Department of Home-

land Security (DHS)’s Homeland Infrastructure Foundation-Level Data (HIFLD) datasets

and the US Environmental Protection Agency (EPA)’s Smart Locations Database datasets

are of particular interest.

The HIFLD is a collection of datasets of point data on the locations of public fa-

cilities, including schools, college, hospitals, and other infrastructure, much of which is

publicly available and free to use. In many cases, this data includes information on staff

size or other data that can be used to quantify the size of facilities, and it could potentially

be used to correct for inaccuracies in LODES data on the location of education and other

government jobs. It also potentially provides for greater ability to distinguish between

different sorts of amenities not distinguishable in the LODES data.

The US Environmental Protection Agency’s (2021) Smart Locations Database is

a collection of indicators associated with the built environment selected for relevance to

environmental efficiency, tabulated by Census block group. Many of these indicators,

including the National Walkability Index (NWI), which attempts to quantify walkability

in a single number, are potentially quite useful for characterizing urban neighborhoods.

However, the Smart Locations Database appears to have last been updated in 2013.

The OpenStreetMap project also has additional potentially useful data beyond the

road networks that were sourced from it for this project. In particular, the Geofabrik GmbH

(2020) OSM datasets contain shapefiles of building footprints that—for the areas they
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cover—are potentially very useful for measuring built form since they, unlike NLCD data,

distinguish between building footprints and paved non-building surface such as roads and

parking lots.

While this data does not give as much detail as the LIDAR-based “built-up volume”

data used by Krehl et al. (2015, 2016, and 2019) in studying the spatial structure of Ger-

man cities, it is potentially incredibly useful. However, while the dataset covers up most

downtowns and significant portions or all of many major metropolitan areas, it is too in-

complete to be used for a complete national survey such as this one. It may, however, be

useful for a more targeted study of major metropolitan areas, or may be extended to cover

larger areas in the future.

Analyzing street networks is one of the most computationally-intensive components

of characterizing neighborhoods, since it requires processing very large datasets and per-

forming complex calculations on them. As such, the repository of already-processed street

network data with a number of calculated measures created by Boeing (2019b) is poten-

tially a useful source for future projects.

Another academic database of potential interest is Leyk et al.’s (2018 and 2020) His-

torical Settlement Data Compilation for the United States (HISDAC-US). This database

consists of 250-meter resolution rasters of intensity of settlement covering much of the

contiguous United States back to 1810. It is based on surveying and real estate data col-

lected by the real estate company Zillow Group, but the raster-level data is freely available

to researchers.
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Since, as discussed in Chapter 1, the nature of the American urban environment has

changed substantially since the advent of automobiles and the Interstate highway system,

being able to identify areas that were built up before these changes could be useful in char-

acterizing urban neighborhoods. However, it is important to note that an area having been

initially developed as a pedestrian-and-streetcar city does not mean that “urban renewal”

and the construction of urban freeways has not completely changed the built environment.

While the previously-discussed data sources are free and available to the public, a

large quantity of proprietary data exists which would be quite useful for characterizing

neighborhood. Of particular note are “point of interest” datasets—which list businesses

and related locations which are of interest to pedestrians—and travel data—often derived

from cell phone location data—from companies such as SafeGraph and Replica. This data,

which is largely intended for marketing firms, is quite expensive, but could be of value if

sufficient budget was available.
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2.5 Processing Data to Characterize Neighborhoods

The final, and most time-consuming, step in characterizing neighborhoods was the

process of taking the raw data discussed in Section 2.4 and importing it into the hexagonal

cell neighborhoods described in Section 2.3.

For the three main data sources—NLCD data, Census data, and OSM road network

data—importing the data was a two-step process, as preliminary processing (discussed in

Sections 2.5.1, 2.5.2, and 2.5.3 respectively) was needed before the data could be extracted

into the hex cells. In addition, NLCD data was used in this initial processing of Census

data.

A general outline of the procedure of processing the raw data and importing it into

the hex cells is shown in Figure 2.5 on page 91. More technical details on this process,

and the R code used, can be found in Appendix C.

2.5.1 Processing NLCD Data

National Land Cover Database data was downloaded from the USGS as rasters made

up of 30-meter pixels with roughly a dozen values corresponding to different types of land

cover, as seen in Figure 2.3 on page 83. However, for the purposes of this project, only

one land-use distinction was used: “developed” versus “undeveloped” land. Land reported

by the NLCD as “low-intensity developed” (20%-49% of land covered with impervious

surfaces), “medium-intensity developed” (50%-79% of land covered with impervious sur-
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Figure 2.5: A flowchart showing the procedure for processing raw data and
using it to characterize the 400-meter hexagonal cells for clustering analysis.
Text in bold indicates data sources and the final hex cell neighborhoods, while
text in italics indicates processes. With the exception of calculating percent
ideal walksheds (done with the service area analysis tool in QGIS) and con-
verting NLCD 180-meter pixel land cover data to vector objects for use in
cropping out undeveloped land (done with a GDAL Python script), all steps
were performed with R scripts.
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faces), or “high-intensity developed” (at least 80% of land covered with impervious sur-

faces) was binned together as developed land, while all other pixel values were binned as

undeveloped land.

This pixel reclassification produced the raster shown in Figure 2.6(a) on page 93. In

the central cores of cities, almost all land except for parks registered as developed, while

suburban areas are dappled with individual developed and undeveloped pixels at a scale

much smaller than the hexagonal neighborhood grid.

Calculating the fraction of pixels in each hex classified as developed produces the

more continuous gradient seen in Figure 2.6(b), with suburban hexes having intermedi-

ate values between the completely developed hexes in the urban core and the completely

undeveloped hexes in parkland such as Patapsco Valley State Park to the left of the image.

The 30-meter pixel developed/undeveloped rasters of the sort shown in Figure 2.6(a)

are sufficient to calculate the percent of developed land in each hex cell. However, NLCD

data was also needed for a second purpose: improving the resolution of ACS and LODES

Census data. This data is reported at the block group and block levels respectively and,

especially in suburban and exurban areas, these geographies are large enough to often

include large tracts of undeveloped land in the same geometry as a concentration of jobs

and residents.

The correlation between developed land—in effect, land that is at least 20% cov-

ered in impervious, artificial surfaces—and density is not absolute. Airport runways and

freeways, for example, register as developed land even though they are not the locations
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Figure 2.6: Two views of NLCD data with the hex cell grid overlaid in part of
the Baltimore-Columbia-Towson, MD Metropolitan Statistical Area. In (a),
developed pixels are white. In (b), hexes are shaded by percent developed
land, with black completely undeveloped.
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of jobs and residents. However, removing undeveloped areas from the block groups and

blocks used to tabulate Census data should give a more accurate sense of the locations

where jobs and residents are actually located.

Rather than cropping the Census geographies with the developed pixels in the rasters

used to classify neighborhoods based on their percent developed land, however, a new

set of rasters with 180-meter pixels were created for use in cropping Census geometries.

These rasters—an example of which is shown in Figure 2.7 on page 95—were created by

reducing the resolution of the classification rasters and by assigning a pixel in the new

raster a value of developed if any of the thirty-six 30-meter pixels covering the same area

as one 180-meter pixel were developed.

This reclassification serves two purposes. First, lowering the resolution in this way

ensures that undeveloped pixels represent large areas of undeveloped land, such as parks,

and not simply large backyards in suburban areas. Second, lowering the resolution makes

the cropping process much more computationally tractable, as it reduces the graininess

of the rasters and thus the complexity of the Census geometry vector objects that remain

after cropping.

As can be seen in Figure 2.7, the 180-meter resolution cropping rasters do seem to

only crop out large parks in urban and inner-suburban areas, but become more dappled in

outer suburban and exurban areas, and in large parks such as Patapsco Valley State Park

on the left of the image, which do contain roads, parking lots, and occasional structures.

Unfortunately, one technical issue with the cropping procedure was discovered: due

to undocumented behavior of the R functions used for the cropping procedure, a small

number of Census block groups were reduced to tiny residual features, resulting in their
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Figure 2.7: Census block groups (outline in red) in part Baltimore-Columbia-
Towson, MD Metropolitan Statistical Area. Black areas have been identified
as completely undeveloped based on NLCD data and will be cropped from
the block groups and blocks used for ACS and LEHD data.
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population data being transferred to a single hex cell. This problem was discovered too

late to redo the analysis, so the resulting invalid hexes (recognizable due to their implau-

sibly high densities) were removed from consideration. For details on this issue, see Ap-

pendix C, Section C.3

2.5.2 Processing Census Data

The pre-processing of Census data primarily consists of cropping the TigerLine Cen-

sus geographies to removewater and undeveloped land. Unlike with the other data sources,

Census data and geographies were downloaded within the R scripts used to process them

using the R packages tidycensus, lehdr, and tigris, which directly access the Census

Bureau’s data APIs.

Census geographies with no population and no jobs were immediately dropped to

save disk space and computation time and were cropped with the same Census water fea-

tures used to remove water areas from hex cells, as discussed in Section 2.3. However,

while water features with areas of less than 100,000 square meters were still discarded

before cropping, Census geometries were kept regardless of the fraction of their areas that

were removed by cropping.

After water areas were cropped out of the Census geographies, undeveloped land

was removed using the 180-meter resolution NLCD data discussed in the previous section.

While these cropping procedures were relatively straightforward, they did produce one

complication.
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All GIS operations on the Census and NLCD data polygons were performed using

the R package sf, which stores spatial features as sets of points. Unfortunately, cropping

an sf polygon feature can, at times, leave a remainder containing only one point or a pair

of points called a linestring instead of a new polygon feature. These features cannot be

stored in the ESRI Shapefile format used to save files to disk, as it only allows a single

geometry type in a given file, so it was necessary to strip out lone points and linestrings

from the cropped Census geometries before they could be saved to disk.

2.5.3 Processing Roads Data

The most computationally intensive part of characterizing the hex cell neighbor-

hoods was processing the OSM road network data. This data was used in two separate

ways to create measures of the road network. First, percent ideal walkshed values (Row-

lands, 2020) were calculated for the centroids of each neighborhood hex cell. Second, and

separately, the road network nodes in each hex cell were analyzed.

In both cases, the road network data needed to be pre-processed to remove non-

walkable roads. Unfortunately, while OSM does contain some information on speed limits

and the presence of sidewalks, this information is unreliable andmissing for a large fraction

of roads. As a substitute, road types corresponding to limited-access and partially grade-

separated roads were removed from the road networks before calculations were performed.

Percent ideal walkshed is a measure of the ratio between measured density and the

density actually experienced by pedestrians in an urban environment. It is based on the

concept of a walkshed: the area reachable bywalking a given distance from a given starting
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point. In an ideal world, this would simply be the area of a circle with the specified radius

but, since pedestrians are generally limited to sidewalks and footpaths, it can be much

smaller depending on how well- or poorly-connected the street network is.

The procedure for calculating the percent ideal walksheds of hex cells, shown in

Figure 2.8 on page 99, involves the calculation of an 800-meter (roughly 1/2-mile) walkshed

for the point on the road network closest to the centroid of the hex cell. This distance was

chosen because it is roughly the distance that transit planners generally assume that people

will walk to transit. The ratio of the area of this walkshed to the area of a circle with an

800-meter radius is then the percent ideal walkshed.

Some hex cells—particularly in rural areas—have no roads crossing them, which

means that the point on the road network closest to the centroid of these hex cells is not

within them. Since this would make the percent ideal walkshed measure not particularly

useful, these hex cells were removed from analysis completely on the justification that a

400-meter radius hex cell with no roads passing through is inherently non-urban.

The second measure used to characterize the road networks of neighborhoods is the

numbers of dead-ends, three-way intersections, and four-way intersections (collectively,

nodes) in the street network of each hex cell. These values are important as measures of

connectivity and it has been suggested, at least since the 1960’s (Jacobs, 2011, Ch. 9) that

small blocks and frequent intersections improve urban walkability and vitality.
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Figure 2.8: The process for calculating percent ideal walksheds.
Figure from Rowlands (2020).
(a) Centroids and 800-meter ideal (circular) walksheds are calculated.
(b) The portion of the road network within 700-meter road distance of the
centroid of each cell is identified.
(c) A 100-meter buffer is created around each cell’s road network section.
This is the actual walkshed.
(d) Percent ideal walkshed is calculated from the ratio between the actual and
ideal walksheds.
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Street network nodes were counted by converting each metropolitan area’s street

network to a topological graph, identifying the order (number of connections) at each

node of the graph, and then counting the number of nodes of each order in each hex. The

main complication was the need to avoid multiply-counting intersections in areas where

sidewalks are included in the OSM datasets.

While the OSM road networks are generally very complete as far as roads go, side-

walks are shown as separate features alongside roads in some but not all areas where they

are actually present. These sidewalk features can make a single four-way intersection ap-

pear to consist of nine closely-spaced four-way intersections as the sidewalks cross each

other and the road beds. In order to achieve better consistency between areas where side-

walk features are and are not present, and in order to to avoid this intersection duplication,

sidewalks and related features were removed from the road networks before nodes were

counted.

2.5.4 Extracting Data to Hex Cells

For the collected data to be useful in characterizing the hex cell neighborhoods, it

needs to be associated with them. This was the simplest in the case of the road network

data, which was initially calculated on the level of hex cells. For the other datasets, it was

somewhat more complicated.
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The NTAD data on the location of military bases was simply used to determine

which cells were located on military bases. To simplify calculation, the centroids of the

cells were used: any hex cell with a centroid in a feature in the military base shapefile was

deemed to be located on a base and was dropped from the analysis.

Calculating the percentage of developed land in each hex cell was somewhat more

complicated, as it required counting the number of pixels in a raster within the boundaries

of each cell, which was defined as a vector object. The R package raster does have a tool

for this, but it runs extremely slowly. Instead, the R package velox, which was developed

specifically for this purpose, was used.

Extracting ACS and LODES data posed a slightly different problem: the need to

redistribute variables from one set of geometries (the cropped Census geographies) to an-

other (the hex cells). This was done with an area-weighted integration R package called

areal, based on the assumption that all variableswere distributed evenly over each cropped

Census geography.

Area-weighted integration works well for extensive variables, such as population,

but not for the one intensive variable being handled, median household income. This is

because the weighting of two block groups’ contributions to a cell’s median income should

be based on their population contributions to the cell, not their relative areas of overlap.

To resolve this issue, the median income variable was made extensive by multiplying it by

population before the area-weighted integration.

Once all the data sources had been imported into the hex cells, hex cells with activity

densities of less than 100 activity units (jobs plus residents) per square mile were removed

on the basis that they were too low in density to qualify as urban.
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Table 2.1: Neighborhood Characterization Variables

Variable Description
AREA_mi Area of the hex cell in square miles
DEVEL_ct Count of developed 30-meter NLCD pixels
UNDEVEL_ct Count of undeveloped 30-meter NLCD pixels
DEVEL_fr Fraction of 30-meter NLCD pixels that are developed
POP_total Total population
HU_htot Total number of housing units
HU_h1d Number of detached single-family housing units
HU_h1a Number of attached single-family housing units
HU_h2 Number of housing units in duplexes
HU_h34 Number of housing units in triplexes and quadruplexes
HU_h59 Number of housing units in buildings of 5-9 units
HU_h1019 Number of housing units in buildings of 10-19 units
HU_h2049 Number of housing units in buildings of 20-49 units
HU_h50 Number of housing units in buildings of 50 or more units
HU_hmobl Number of mobile homes and vehicles used as homes
JOBS_total Total number of jobs
JOBS_11 Number of jobs in NAICS sector 11
JOBS_21 Number of jobs in NAICS sector 21
JOBS_22 Number of jobs in NAICS sector 22
JOBS_23 Number of jobs in NAICS sector 23
JOBS_3133 Number of jobs in NAICS sectors 31-33
JOBS_42 Number of jobs in NAICS sector 42
JOBS_4445 Number of jobs in NAICS sectors 44-45
JOBS_4849 Number of jobs in NAICS sectors 48-49
JOBS_51 Number of jobs in NAICS sector 51
JOBS_52 Number of jobs in NAICS sector 52
JOBS_53 Number of jobs in NAICS sector 53
JOBS_54 Number of jobs in NAICS sector 54
JOBS_55 Number of jobs in NAICS sector 55
JOBS_56 Number of jobs in NAICS sector 56
JOBS_61 Number of jobs in NAICS sector 61
JOBS_62 Number of jobs in NAICS sector 62
JOBS_71 Number of jobs in NAICS sector 71
JOBS_72 Number of jobs in NAICS sector 72
JOBS_81 Number of jobs in NAICS sector 81
JOBS_92 Number of jobs in NAICS sector 92
PER_WALK Percent ideal walkshed (as a fraction, not a percent)
NODES_D1 Number of dead ends in the street network
NODES_D3 Number of 3-way intersections in the street network
NODES_D4 Number of 4-or-more-way intersections in the street network
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For the purposes of developing a neighborhood typology (discussed further in Chap-

ter 3), a single file was saved containing all the hex cells from all 926 CBSAs studied, with

the variables shown in Table 2.1 on page 102. These variables were specifically selected to

characterize built environment while leaving more distinctly demographic variables, such

as race and income, out of the neighborhood typology so that the demographics of similar

neighborhoods can be compared in the metropolitan area typologies in Chapter 3.

As a final step, the neighborhood characterization variables were simplified by com-

bining them into larger groups, reducing the number of variables to a smaller set that was

easier to work with. The variables, shown in Table 2.2 on page 104, are divided into four

groups: activity, housing units, percent ideal walkshed, and percent developed land.

Total activity units and activity density are defined as the sum and density of the sum

of all jobs and residents in a hex. The fractions of activity units consisting of residents and

of four job types—retail (including entertainment), education/medical, office (including

research), and industrial—are then broken out into separate variables.

Retail and education/medical jobs were separated from office and industrial jobs

because the former tend to provide services to their local neighborhoods and to be non-

tradable, as calculated by Jensen (2011), between metro areas while the latter are largely

tradable and less often provide local services or direct benefits to their neighborhoods.

Industrial and office jobs were broken out separately because of their different land-use

impacts, while retail and education/medical jobs were broken out because location data

on the latter are less reliable in the LODES dataset used for determining employment

locations.
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Table 2.2: Simplified Neighborhood Characterization Variables

Variable Description

ACT_TOTAL Total number of activity units (jobs plus residents)

ACT_DENSE Density of activity units

ACT_RESID Residents as a fraction of all activity units

ACT_RETAIL Jobs in NAICS sectors 44–45, 71–72, and 81 as a fraction of all activity units

ACT_EDMEDS Jobs in NAICS sectors 61–62 as a fraction of all activity units

ACT_OFFICE Jobs in NAICS sectors 51–56 and 92 as a fraction of all activity units

ACT_INDUST Jobs in NIACS sectors 11–23, 42, and 48–49 as a fraction of all activity units

HU_TOTAL Total number of housing units

HU_SFH Detached single-family housing units as a fraction of all housing units

HU_SMALL
Housing units in row houses and apartments of <10 units as a fraction of all
housing units

HU_LARGE Housing units in apartments of ≥10 units as a fraction of all housing units

HU_MOBILE Housing units in mobile homes and vehicles as a fraction of all housing units

PER_DEV Percent developed land (as a fraction, not a percent)

PER_WALK Percent ideal walkshed (as a fraction, not a percent)
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The total number of housing units was recorded, along with the fractions of housing

units in four categories: detached single-family homes, row houses and small apartment

buildings, large apartment buildings, and mobile homes and vehicles. The goals of these

categories was to provide a general metric for the sort of built environment predominating

in a neighborhood. Ideally, row houses would have been separated from duplexes and

other small apartment buildings, but it was decided to group them to reduce the number

of variables used in clustering.

The percent developed land (fromNLCD data) and percent ideal walkshed variables

were not changed in this step. However, I decided not to use the street network node data

because it appeared to be unreliable. While it does produce aesthetically pleasing and

potentially useful maps of street networks, as shown in Figure 2.9 on page 106, the number

of nodes counted per hex was inconsistent.

Discussion with Geoff Boeing of the University of Southern California in Los An-

geles provided a likely explanation for this issue. It seems that both OSM and Census road

network shapefiles contain topological errors in the representation of complex intersec-

tions, many of which are represented as larger numbers of simpler intersections. Boeing

(2020a) has attempted to solve this problem with the OSMnx package, which consolidates

road network topologies, but there was not time to attempt to integrate this approach into

my analysis.
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Figure 2.9: Intersections in the Baltimore metro area. Figure from Rowlands (2021).
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2.6 Results

Although the primary goal of the neighborhood characterization discussed in this

chapter is to provide data for the k-means cluster analyses in Chapter 3, the data can also

be used to directly describe the neighborhood hex cells. In this section, I describe the

breakdown of neighborhoods nationally by activity density, street network connectivity,

land use types, and housing types, and then draw some preliminary conclusions about

differences in metropolitan areas and the rarity of dense urban form.

2.6.1 Density and Connectivity

The activity density and street network connectivity of urban areas are both closely

related to walkability and public transportation, as they determine the number of people,

whether residents or workers, who will be within walking distance of any given location.

Furthermore, while each can be considered separately, they can also be combined in the

measure walkshed-adjusted density (Rowlands, 2020), whichmultiplies density by percent

ideal walkshed to determine the experienced density of a neighborhood, which will be

lowered if poorly-connected streets reduce the area—and thus number of people—within

a short walk of a given location.

Table 2.3 on page 108 shows the breakdown of population and jobs nationally into

seven activity density categories, each twice the density of the one before. Particularly no-

table binning boundaries are the ones at 40,000 activity units per square mile—the rough

density at which either public transportation or expensive multi-level parking garages be-

come essential, as noted by various authors includingGarreau (1992)—and 10,000 activity
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Table 2.3: Distribution of Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes
Population
(millions)

% of
Population

Jobs
(millions)

% of
Jobs

> 80,000 485 0.02% 3.47 1.2% 7.60 6.5%

40,000 – 80,000 1,295 0.07% 5.53 1.9% 5.20 4.4%

20,000 – 40,000 5,966 0.3% 13.4 4.6% 10.90 9.3%

10,000 – 20,000 26,581 1.5% 33.4 11.5% 21.88 18.6%

5,000 – 10,000 90,711 5.2% 67.5 23.2% 30.27 25.7%

2,500 – 5,000 155,105 8.9% 64.8 22.3% 21.54 18.3%

< 2,500 1,466,542 84.0% 102.2 35.2% 20.31 17.3%

units per square mile—the density at which, according to Newman and Kenworthy (2006),

public transportation can begin to break down automobile dependence with good land use

choices.

It is immediately obvious from this table that lower-density neighborhoods—particularly

those with densities below 10,000 activity units per square mile—dominate residential ar-

eas of American metro areas, with 80% of metropolitan populations located in such neigh-

borhoods. This effect is significantly less pronounced for job distribution, but 60% of jobs

in metropolitan areas are also located in such neighborhoods.

The distribution of population and jobs by neighborhood street network connectivity

is a bit more balanced, however. Table 2.4 on page 109 shows the distribution of population

and jobs by percent ideal walkshed in bins 10%wide from greater than 65% ideal walkshed

to less than 15% ideal walkshed.

Since the ratio of the area of a square to that of a circle circumscribed around it is 2/π,

an ideal square street grid with small blocks would have a percent ideal walkshed of 64%.

Actual street grids vary widely, and while blocks are ideally around 100 meters or shorter
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Table 2.4: Distribution of Population and Jobs by Percent Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes
Population
(millions)

% of
Pop.

Jobs
(millions)

% of
Jobs

> 65% 10,941 0.6% 17.5 6.0% 11.5 9.7%

55% – 65% 47,357 2.7% 41.3 14.2% 18.6 15.8%

45% – 55% 88,678 5.1% 47.2 16.3% 21.2 18.0%

35% – 45% 175,465 10.0% 52.5 18.1% 22.5 19.1%

25% – 35% 443,334 25.4% 59.7 20.6% 21.8 18.5%

15% – 25% 774,798 44.4% 56.5 19.5% 16.8 14.3%

< 15% 206,112 11.8% 15.6 5.4% 5.32 4.5%

for pedestrian convenience (Siksna, 1997) they can be significantly longer in US cities:

even east-west blocks inManhattan approach 300 meters long. This can potentially reduce

percent ideal walkshed significantly by increasing the walk from a random starting point

to the nearest intersection but, even so, percent ideal walkshed in areas with pedestrian-

friendly grids is generally at least 55%. Such areas contain roughly 20% of population

and 25% of jobs in metro areas nationally.

Finally, Table 2.5 on page 110 combines these measures to show the numbers and

percentages of jobs and residents in neighborhoods at different walkshed-adjusted density

levels. Since the median percent ideal walkshed for both jobs and residents is less than

50%, the bin sizes are shifted down by one from the activity densities given in Table 2.3.

Unsurprisingly, there is significant variation between metropolitan areas in the den-

sity and connectivity of their neighborhoods. Appendix D has maps and tables of popula-

tion and job distribution by neighborhood activity density and connectivity for the twenty

largest metropolitan areas in the country, as well as for ten other medium-sized metropoli-

tan areas of interest. An example map for Baltimore is given in Figure 2.10 on page 111,
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Table 2.5: Distribution of Population and Jobs by Walkshed-Adjusted Activity Density

Walkshed-
Adjusted
Density

( / sq. mi.)

Hexes % of
Hexes

Population
(millions) % of Pop. Jobs

(millions)
% of
Jobs

> 40,000 731 0.04% 5.15 1.8% 8.46 7.2%

20,000 – 40,000 1,609 0.09% 5.90 2.0% 5.12 4.3%

10,000 – 20,000 6,432 0.4% 13.7 4.7% 9.70 8.2%

5,000 – 10,000 23,439 1.3% 29.0 10.0% 17.5 14.9%

2,500 – 5,000 64,761 3.7% 51.1 17.6% 23.6 20.1%

1,250 – 2,500 100,854 5.8% 51.4 17.7% 20.0 17.0%

< 1,250 1,548,859 88.7% 134.0 46.2% 33.3 28.3%

which shows that density and connectivity are relatively correlated, with a dense and well-

connected core in the center and higher connectivity in suburban areas with some density.

However, dense suburban areas tend to only reach the medium connectivity range, while

areas within the urban core are almost all more highly-connected.
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Figure 2.10: Baltimore-Columbia-Towson, MD MSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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2.6.2 Land Use Types

Land use was measured based on the fractions of activity units consisting of resi-

dents and jobs in the four categories listed in Table 2.2 on page 104. Despite the attempts

of zoning policies in much of the country, land use is in the US is not fully Euclidean

(Sutherland, 1926), and almost all neighborhood hexes do have some mixture of uses.

I divided land use into the twelve categories shown in Table 2.6 on page 113 via

a two-step process. First, neighborhoods were classified as residential or non-residential

based on whether a majority of activity units were residents or jobs. Residential neigh-

borhoods were classified as either “Pure Residential” or “Residential” depending on the

fraction of activity consisting of residents, and non-residential neighborhoods were clas-

sified by their plurality job type and whether this job type was a majority of all activity

units.

Finally, I created two categories for specifically walkable neighborhoods. “Walka-

ble Residential” neighborhoods are any residential neighborhoods meeting a threshold of

walkshed-adjusted density of retail jobs selected to identify streetcar suburb-type neigh-

borhoods with enough retail that residents can carry out most errands on foot. “Mixed

Use” neighborhoods have to meet the same retail job cut-off but are non-residential neigh-

borhoods without a dominant job type.

Table 2.7 on page 116 shows the distribution of jobs and population among the

twelve land-use categories. It is evident that population is nearly entirely concentrated in

residential neighborhoods, though this may partly because 90% of neighborhoods are clas-

sified as residential. On the other hand, over a quarter of jobs are located in neighborhoods
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Table 2.6: Use Type Definitions

Use Type Definition

Pure
Residential population is ≥ 90% of total activity units

Residential population is between 50% and 90% of total
activity units

Walkable
Residential

all residential areas with a walkshed-adjusted
density of at least 400 retail jobs

Mixed Use
all non-residential areas with a walkshed-adjusted
density of at least 400 retail jobs and where no job
type is ≥ 40% of total activity units

Retail retail jobs are ≥ 50% of total activity units

Retail Mix total jobs are ≥ 50% of total activity units and retail
jobs are a plurality of jobs

Education /
Medical

education and medical jobs are ≥ 50% of total
activity units

Education /
Medical Mix

total jobs are ≥ 50% of total activity units and
education and medical jobs are a plurality of jobs

Office office jobs are ≥ 50% of total activity units

Office Mix total jobs are ≥ 50% of total activity units and
office jobs are a plurality of jobs

Industrial industrial jobs are ≥ 50% of total activity units

Industrial
Mix

total jobs are ≥ 50% of total activity units and
industrial jobs are a plurality of jobs
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classified as non-walkable residential. This is likely partially due to the rather large choice

of neighborhood size and Lang’s (2003) “edgeless city” observation: that most jobs, and

even most office jobs, are distributed at low density throughout metro areas rather than

being clustered in downtowns or edge cities.

Only 11% of the population nationally lives in walkable residential areas, while 52%

lives in neighborhoods where at least 90% of the activity units are residents. Honestly, it’s

hard to say if this is a large or a small number, given the wide range of values among

metropolitan areas: 25% of San Franciscans but only 5% of Pittsburghers residents live

in such neighborhoods. (41% of New Yorkers do, but in this, as in most of the data, New

York is an outlier.)

Appendix E has maps and tables of population and job distribution by neighborhood

use type for the same thirty metro areas included in Appendix D. The map for Baltimore is

presented as an example in Figure 2.11 on page 115. Most of the map is pure residential,

with strips of mixed residential and commercial uses along major roads, and with walkable

residential areas mostly concentrated to the north and southeast of downtown Baltimore.

Large industrial tracts are visible, mostly associated with Baltimore/Washington Interna-

tional Thurgood Marshall Airport and port facilities in Baltimore.
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Figure 2.11: Baltimore-Columbia-Towson, MD MSA use type neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table 2.7: Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes

Population
(millions)

% of
Population

Jobs
(millions)

% of
Jobs

Pure
Residential 1,101,068 63.0% 152.1 52.4% 5.91 5.0%

Residential 467,439 26.8% 80.9 27.9% 26.1 22.1%

Walkable
Residential 23,916 1.4% 32.1 11.1% 12.1 10.3%

Mixed Use 11,134 0.6% 6.06 2.1% 11.4 9.7%

Retail 18,368 1.1% 2.18 0.7% 7.44 6.3%

Retail Mix 16,419 0.9% 2.73 0.9% 5.17 4.4%

Education /
Medical 7,674 0.4% 1.74 0.6% 6.93 5.9%

Education /
Medical Mix 6,926 0.4% 1.58 0.5% 2.83 2.4%

Office 9,779 0.6% 1.96 0.7% 13.5 11.5%

Office Mix 11,625 0.7% 2.76 1.0% 7.20 6.1%

Industrial 49,053 2.8% 2.90 1.0% 12.7 10.8%

Industrial
Mix 23,284 1.3% 3.20 1.1% 6.43 5.5%
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2.6.3 Housing Types

Like use types, housing types—based on the type of housing units present—are gen-

erally mixed at the neighborhood level, though hexes consisting solely of single-family

homes do exist, unsurprisingly. I classified neighborhoods into nine categories based on

the types of housing present: three for majority-detached-single-family-home neighbor-

hoods, three for majority-apartment (including row house) neighborhoods, and three for

other types of neighborhoods. The resulting categories are listed in Table 2.8 on page 118.

The three majority-single-family-housing categories are simply divided up by the

percentage of housing units that are single-family homes: this is in part a response to the

predominance of this this housing type, which makes up 63% of housing units in the US

(Hirt, 2014, 20) and a much larger fraction of the land devoted to housing: 85% of hexes

nationally are majority detached-single-family-home.

The threemultifamily housing categories, on the other hand, are differentiated by the

type of multifamily housing present: whether the majority of all housing is row houses and

buildings with less than ten units, buildings with more than ten units, or whether neither

type has an absolute majority. The goal of this differentiation is largely to serve as a metric

for overall building form factor in neighborhoods that do not consist of detached single-

family homes.

While multifamily housing is expected to be the most common form of housing

in denser urban areas, the remaining three categories are not expected to be significant

sources of housing. The “FewHousing Units” category is intended to catch neighborhoods
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Table 2.8: Housing Type Definitions

Housing Type Definition

Pure
Single-Family ≥ 90% of housing units are detached single-family

Single-Family between 75% and 90% of housing units are detached
single-family

Mixed
Single-Family

between 50% and 75% of housing units are detached
single-family

Multifamily:
Small Building

≥ 50% of housing units are row houses or apartments in
buildings of less than 10 units

Multifamily:
Large Building

≥ 50% of housing units are apartments in buildings of
more than 10 units

Multifamily:
Mixed Types

≥ 50% of housing units are row houses or apartments, but
does not qualify for other multifamily categories

Mobile Homes ≥ 40% of housing units are mobile homes, even if the hex
qualifies for another category

Mixed Housing
Types all other cases

Few Housing
Units < 2 housing units per hex
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where the total number of housing units is too low—purely commercial or industrial hexes

and hexes made up entirely of group quarters—for housing unit characterization to be a

useful distinction. In practice, this mostly identifies some, but not all, airports.

Hexes are identified as “Mobile Homes” if as many as forty percent of their housing

units are vehicles or mobile homes/trailers. This potentially overrides other categories: a

hex that consisted of 55% detached single-family homes and 45% mobile homes would

be classified as a mobile homes hex. This choice was made based on the relatively low

number of hexes where mobile homes predominate and a desire to be able to identify areas

where they are and are not present at all.

Finally, the “Mixed Housing Types” category is a catch-all for hexes that don’t fit

into any of the other categories: it makes up only 1.7% of hexes nationally and does not

really correspond to a particular built environment type, so far as I can tell.

Table 2.9 on page 120 shows the distribution of jobs and population among the nine

housing-type categories nationally. Although the vast majority of hexes are majority de-

tached single-family homes, there is significant variation in how large a majority it is.

Meanwhile, all three types of multifamily neighborhood seem to be similarly common.

Although mobile home neighborhoods are rare nationally, mapping the data shows signif-

icant regional variation: large tracts of hexes that are majority mobile homes do exist on

the outskirts of many Southeastern cities, while they are less common in other regions.

Appendix F has maps and tables of population and job distribution by neighborhood

use type for the same thirty metro areas included in Appendices D and E. An example map

for Baltimore is presented in Figure 2.12 on page 122 and shows that most of Baltimore
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Table 2.9: Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes

Population
(millions)

% of
Population

Jobs
(millions)

% of
Jobs

Pure
Single-Family 430,320 24.6% 57.9 20.0% 11.3 9.6%

Single-Family 560,142 32.1% 65.6 22.6% 18.3 15.6%

Mixed
Single-Family 499,284 28.6% 78.5 27.0% 31.0 26.3%

Multifamily:
Small

Building
28,433 1.6% 23.6 8.1% 9.12 7.7%

Multifamily:
Large

Building
19,105 1.1% 18.6 6.4% 21.2 18.0%

Multifamily:
Mixed Types 66,757 3.8% 33.9 11.7% 20.2 17.2%

Mobile
Homes 96,377 5.5% 6.02 2.1% 1.98 1.7%

Mixed
Housing
Types

30,104 1.7% 5.91 2.0% 3.04 2.6%

Few Housing
Units 16,163 0.9% 0.35 0.1% 1.54 1.3%
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City is made up of small apartments and rowhouses while large swaths of suburban areas

consist of more than 90% single-family homes. Notably, large apartment buildings are

found both in the core of the city and in significantly less-dense suburban areas.
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Figure 2.12: Baltimore-Columbia-Towson, MDMSA housing type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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2.6.4 Are there only eight cities in the US?

Table 2.10 on page 124 shows the twenty US metro areas with at least 20,000 res-

idents living in hex cells with a density of 40,000 activity units per square mile, roughly

the density where either expensive multi-story parking garages or public transportation is

necessary.

Notably, there is a 40%drop from the last twometro areas—Denver and SanDiego—

which have populations of 24,000 in hexeswith a density of 40,000 activity units per square

mile to the first city not shown in the table—Milwaukee—with a population of only 14,000

at this density. Furthermore, while the table contains the nine largest metro areas in the

US, it is missing the tenth—Phoenix—which has only 11,000 residents in hexes at the cut-

off density. The other eleven metro areas included in the table range from number Boston

(11th) and San Francisco (12th) to Honolulu (56th) and Madison, WI (89th).

Looking over Table 2.10, it is immediately obvious just how much of an outlier New

York is in terms of density: assuming that the vast majority of the neighborhoods with

densities of at least 40,000 activity units per square mile are in CBSAs, the 2.8 million

residents of the New York metro area who live at densities of at least 80,000 activity units

per square mile make up 80% of Americans living at this density. Likewise, the 6.4 million

New Yorkers who live at densities of at least 40,000 activity units per square mile are 70%

of the Americans who live this density nationally.
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Table 2.10: Top 20 Metro Areas by Population in High-Activity Hexes

Metro Area
MSA

Population
Rank

Population in
40k Activity Units
Per Sq. Mi. Hexes

Population in
80k Activity Units
Per Sq. Mi. Hexes

New York 1 6,376,000 2,816,000

Los Angeles 2 466,000 73,000

San Francisco 12 358,000 117,000

Chicago 3 327,000 97,000

Boston 11 243,000 82,000

Washington 6 231,000 58,000

Philadelphia 8 160,000 42,000

Seattle 15 114,000 51,000

Honolulu 56 89,000 9,000

Miami 7 79,000 16,000

Atlanta 9 39,000 8,000

Minneapolis 16 38,000 13,000

Houston 5 36,000 4,000

Dallas 4 29,000 7,000

Baltimore 21 29,000 4,000

Portland, OR 25 28,000 7,000

Madison, WI 89 27,000 0

Pittsburgh 27 26,000 8,000

Denver 19 24,000 6,000

San Diego 17 24,000 2,000
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Another 15% and 20%ofAmericans living at densities of 80,000 and 40,000 activity

units per square mile live in the next seven cities on the list—San Francisco, Chicago,

Boston, Los Angeles, Washington, Seattle, and Philadelphia—meaning that 95% and 90%

of Americans living at these densities live in just eight metro areas.

While jobs are generally more concentrated than population, Table 2.11 on page 126

shows that the same eight cities also have the most jobs in hexes of at least 40,000 and at

least 80,000 activity units per square mile.

Public transportation analyst and advocate Alon Levy is known for asserting that

only eight US cities “have public transportation” (Levy, 2019), based on their commute

to work transit mode-shares. Other than the substitution of Honolulu (ninth in order of

population in 40,000 activity unit per square mile hexes) for Los Angeles, their list of cities

with significant public transit is identical to my list of cities with substantial populations

living at high densities.

One might make a case based on the evidence in table 2.10 that, although the US

has over fifty metro areas with a million or more residents, it really only has eight cities

and the others should be seen as some new and different type of human habitation, built

fundamentally around the automobile and lacking the concentration that has historically

been present in cities. The fact that the list contains some of the most expensive and

rapidly gentrifying metro areas in the country potentially supports this interpretation: as

traditional urban lifestyles have become popular with high-income groups over the past

two decades, the limited supply of traditionally urban neighborhoods has funneled them

into the few metro areas where these are available.
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Table 2.11: Top 25 Metro Areas by Jobs in High-Activity Hexes

Metro Area
MSA

Population
Rank

Jobs in
40k Activity Units
Per Sq. Mi. Hexes

Jobs in
80k Activity Units
Per Sq. Mi. Hexes

New York 1 3,577,000 2,782,000

Los Angeles 2 995,000 411,000

Chicago 3 753,000 586,000

Washington 6 739,000 453,000

San Francisco 12 626,000 425,000

Boston 11 571,000 409,000

Seattle 15 437,000 332,000

Philadelphia 8 340,000 253,000

Atlanta 9 339,000 152,000

Dallas 4 330,000 124,000

Houston 5 286,000 156,000

Minneapolis 16 196,000 136,000

Miami 7 182,000 37,000

Orlando 23 150,000 98,000

Phoenix 10 149,000 32,000

San Jose 35 148,000 55,000

Pittsburgh 27 147,000 105,000

Honolulu 56 135,000 62,000

Las Vegas 28 123,000 40,000

Denver 19 119,000 67,000

Baltimore 21 117,000 56,000

Portland 25 115,000 65,000

Detroit 14 108,000 61,000

Cleveland 34 103,000 92,000

St. Louis 20 99,000 42,000
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However, the interpretation that there are only eight cities in the US seems like an

oversimplification, and certainly premature to make on the basis of these two charts: the

more-detailed typologies developed by k-means clustering in Chapter 3 should provide a

more-nuanced view.
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Chapter 3: Developing Neighborhood and Metro Area Typologies

The work in Chapter 2 characterizing neighborhoods in the form of hex cells is

preliminary to the main goal of this project: typologizing neighborhoods and metro areas

and identifying types that correspond to walkable urbanism and are potentially amenable

to improved public transportation.

In Section 3.1 of this chapter, I discuss the creation of neighborhood typologies

developed based on the characteristics measured in Chapter 2. I then present a pair of

typologies of metro areas based on the distributions of population and of jobs in these

neighborhood types in Section 3.2. These neighborhood and metro area types and their

potential applications are then discussed in further detail in Section 3.3.

Neighborhood and metropolitan area typologies were developed using the k-means

clustering technique, which divides a dataset into k clusters of similar features by partition-

ing it to minimize the distance between features within each cluster. A k-means analysis

begins with initial seed clusters, which may be random or selected based on theoretical

considerations. These clusters are defined by centroid vectors and each data point is as-

signed the cluster with the shortest (usually Euclidean) distance between its data values
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and those of the cluster centroid. Cluster centroids are then recalculated and data points are

reassigned based on the distances to the new centroid vectors. This process is continued

until the clusters converge (Steinley, 2006, 2-6).

The two major limitations of this approach are that it requires the investigator to se-

lect the value of k—the number of clusters to be obtained—and that the clusters obtained

will generally depend on the choice of initial seed clusters. This latter feature is a con-

sequence of the fact that the algorithm converges when it reaches a local optimum, but

cannot verify whether this local optimum is in fact a global optimum. Although various

methods have been proposed to select starting seeds, repeating the algorithm with a large

number of random initial seeds has been found to give comparably-good results (Steinley,

2006, 6-7).

A number of methods have been proposed for identifying the optimal number of

clusters to use for a given dataset; there is no consensus on the best method (Steinley, 2006;

Sugar and James, 2003; Tibshirani et al., 2001). However, most of the possible methods

involve performing repeated analyses for a variety of k values and analyzing various sta-

tistical measures of the resulting clusters. Because of the very large datasets used for the

neighborhood clustering—nearly four million hexes and roughly a dozen variables—the

calculations for even a single value of k with a relatively small number of random seeds

could take more than a day, and a simpler method was needed.

As discussed in more detail in Appendix G, k values were selected in part based on

the rule of thumb discussed by Royall and Wortmann (2015) that k should be roughly the

square root of half the number of data points and, for the metro area typologies, where

calculations were less time-consuming, based on a goal of having 80-90% of variation be-
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tween clusters, balanced with the need to have a small enough number of clusters to make

analysis of the resulting clusters meaningful. In addition, the k-means clusters used in this

project were computed using Euclidean distances, the MacQueen k-means algorithm, and

random seeds.

Details on methodology used in the analyses in this chapter can be found in Ap-

pendix G. The source code for the R scripts used is available in UMBC’s online Scholar-

Works repository. The full results of my metro area typology are given in tables in Ap-

pendix I and maps and tables of additional data on selected metro areas are provided in

Appendices H and J. In addition, tables associated with the analysis in Section 3.3.3 can

be found in Appendix K
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3.1 Neighborhood Clusters

Both neighborhood-type and metro area-type clusters were found using variables

normalized by calculating z-scores: subtracting the mean value of the variable from each

variable and dividing the results by the standard distribution. While this procedure is

generally effective at re-scaling variables so that differences in each variable will have a

similar effect on the distances between data points and their assignment to clusters, it runs

into a significant difficulty with the activity density data.

The problem is that the most-dense cells have densities of nearly one million ac-

tivity units per square mile, while the least-dense cells considered have activity densities

of one hundred activity units per square mile: a difference of four orders of magnitude.

Meanwhile, the other variables used in the analysis are percentages and vary significantly

less broadly. As a result, differences in activity density tend to swamp variation in other

variables in producing cluster assignments.

This effect is particularly pronounced at the highest densities, since relatively few

hexes have high activity densities, while far, far more hexes have densities close to the

100 activity units per square mile lower bound. Since higher-density hexes are also of

more interest from the perspective of assessing walkability and urban vitality, this poses a

serious difficulty.

One option, not attempted here, would simply be to set a very high cut-off density

and remove all hexes with lower densities. Eliminating all neighborhoods with densities of

less than 10,000 activity units per square mile, for example, would retain neighborhoods

with truly urban densities and reduce the range of activity density values to two orders
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of magnitude. However, while these are the primary neighborhoods of interest in the

context of walkability and amenability to public transportation, they consist of a very small

fraction of neighborhoods in American metro areas and a typology that focused solely on

them could not reasonably be called a typology of US metropolitan neighborhoods in

general.

3.1.1 Activity Density and Connectivity Neighborhood Clusters

One potential approach to resolving this issue is a two-step clustering procedure.

If clusters are first found based on density, and then the density clusters are broken up

into sub-clusters based on other variables, it is possible to isolate density from variables

with smaller ranges. However, performing clustering in two steps adds an additional level

of arbitrariness into the results, since it requires selections of k for the initial clustering

and each sub-cluster. As a result, the single-step clustering procedure using a very large

number of clusters discussed in Section 3.1.2 was eventually settled on.

However, a preliminary attempt at a two-step neighborhood clustering approach was

made, and the results from its first step are of potential interest. Three variables were used:

activity density, percent ideal walkshed, and percent developed land. These variables are

not fully independent: there is a 64% correlation between percent ideal walkshed and

percent developed land, a 53% correlation between activity density and percent developed

land, and 40% correlation between activity density and percent ideal walkshed.
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Table 3.1: Activity Density / Connectivity Clusters

Cluster Name Cluster
Size

Median
Activity
Density

Median
% Developed

Land

Median
% Ideal
Walkshed

CBD (High Density) 19 510,000 93% 68%

CBD (Medium Density) 65 230,000 96% 68%

CBD (Low Density) 340 110,000 96% 65%

Urban (High Density) 1,339 54,000 97% 63%

Urban (Mid-Density) 7,562 23,000 97% 57%

Urban (Low Density,
High Connectivity) 27,263 10,000 95% 58%

Urban (Low Density,
Low Connectivity) 27,477 8,900 87% 35%

Suburban (High Density,
High Connectivity) 66,711 4,700 83% 54%

Suburban (High Density,
Low Connectivity) 77,107 3,400 71% 38%

Suburban (Mid-Density,
High Connectivity) 67,892 2,000 42% 45%

Suburban (Mid-Density,
Low Connectivity) 61,627 2,800 65% 21%

Suburban (Low Density,
High Connectivity) 113,928 1,500 37% 30%

Suburban (Low Density,
Low Connectivity) 122,471 1,000 28% 19%

Exurban 1 150,853 450 9% 34%

Exurban 2 395,283 240 4% 25%

Exurban 3 471,913 190 3% 18%

Exurban 4 154,861 240 5% 11%
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As seen in Table 3.1 on page 133, the resulting clusters are strongly density-based:

in the seventeen-cluster solution shown, roughly eleven distinct activity density levels are

seen among the clusters. At low and intermediate densities, pairs of clusters with higher

and lower connectivity are visible as well, though there is also clearly a trend toward higher

connectivity, as measured by percent ideal walkshed, at higher densities. Above roughly

10,000 activity units per square mile, all clusters are at the high end of the percent ideal

walkshed range.

The very small number of hexes in the high-density clusters is also quite notable:

while the clusters with median densities less than 2,000 activity units per square mile have

at least one hundred thousand hexes each, the highest-density cluster has only 19 hexes,

and there are only 424 hexes in clusters with median densities above 100,000 activity units

per square mile.

3.1.2 Comprehensive Neighborhood Clusters

After preliminary work with clusters based solely on activity density, percent devel-

oped land, and percent ideal walkshed, the next step was to develop a typology based on

the full set of land-use and built form variables developed to characterize neighborhoods

in Chapter 2. Ten variables, representing density, connectivity, land use type, and housing

type were used to create clusters.

Using three times as many variables as were used for the density-and-connectivity

clusters posed a significant computational challenge, as the larger number of variables

and the need for far more clusters to represent the variation in so many variables both
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increased the time needed to complete a k-means clustering run. To make it possible to

complete clustering analyses in a reasonable time, hex cells with activity densities less

than 500 activity units per square mile—the density cut-off the Census Bureau uses for

allowing jumps across low-density areas in the fringes of urban areas and urban clusters

(US Census Bureau, 1994, Ch. 12)—were excluded from the analysis, leaving 765,085

hex cell neighborhoods to typologize.

Even with this reduction in the number of neighborhoods included, a k-means anal-

ysis with fifty random seeds still took several days to complete, so doing a thorough com-

parison of the results with different numbers of clusters was difficult. However, the rule of

thumb presented by Royall and Wortmann (2015) that k should be
√
n/2 where n is the

number of data points works well in this case, as
√

765085/2 is 618.49. Using 600 clusters

both approximated the number recommended by the rule of thumb and resulted in a typol-

ogy that both seemed to accurately reflect the diversity of neighborhoods in metro areas

and that had a workable number of clusters to analyze individually.

Along with the activity density, percent developed land, and percent ideal walkshed

variables used in the preliminary analysis in the previous section, four variables repre-

senting types of land use and three representing types of built environment were included.

Since nearly all hexes contain at least some housing units, the housing unit data was judged

to be useful even for primarily-commercial hexes as a measure of the built form and build-

ing sizes in an area.

For land use, the percentages of activity units consisting of jobs in the retail, educa-

tion and medical, office, and industrial sectors were included, with the difference between

the sum of these percentages and 100% representing the percentage consisting of popu-
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Table 3.2: Cluster Density Type Definitions

Density Type Average Activity Units
per Square Mile

Extremely High >160,000

Very High 40,000–160,000

High 20,000–40,000

Low 10,000–20,000

Very Low 5,000–10,000

Minimal <5,000

lation. For housing type, fractions of housing units consisting of single-family homes,

apartments in small buildings and row houses, and apartments in large buildings were in-

cluded, with the difference between the sum of these percentages and 100% representing

the percentage of housing units in mobile homes and vehicles. More detailed descriptions

of these variables can be found in Table 2.2 on page 104.

While a very large number of clusters is necessary to fully describe the variations of

urban form in the United States, it is impractical to attempt to characterize each cluster type

independently. Instead, clusters were classified into types based on their average density

and connectivity and based on their dominant activity type and housing type.

Six activity density categories, shown in Table 3.2 on page 136 were defined with

density levels motivated by theoretical and practical concerns. Two important density lev-

els for urbanism are 10,000 activity units per square mile, at which Newman and Kenwor-

thy (2006) and others have noted that automobile dependency first starts to break down and

40,000 activity units per square mile, at which Garreau (1992) noted that, in the absence

of well-used transit, expensive, multi-level parking garages start to become necessary.
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Table 3.3: Cluster Connectivity Type Definitions

Connectivity Type Average Percent
Ideal Walkshed

Very High >55%

High 45%–55%

Low 35%–45%

Very Low 25%–35%

Minimal <25%

The density levels chosen were selected primarily with a focus on these density lev-

els, but the cut-off of 160,000 activity units per square mile for “Extremely High” was

chosen for more practical reasons related to the clusters themselves. Due to the low num-

ber of neighborhoods this dense and the fact that almost all of them are central business

district office space, the clustering algorithm failed to distinguish between use types for

them, although some residential neighborhoods in New York and educational and medical

campuses in several cities also attain this density.

Clusters were also sorted into five connectivity types, shown in Table 3.3 on page 137

based on their average percent ideal walkshed values. Boundaries for these categories were

spaced by 10% and were selected based on the fact that very few neighborhoods had values

above 65% or below 15%.

In addition, formapping purposes, clusters were sorted into intensity types bywalkshed-

adjusted activity density, with boundaries between types set at half the densities used for

the density categories, as shown in Table 3.4 on page 138. These boundaries were chosen

based on the fact that high-connectivity clusters have percent ideal walksheds of roughly

50% and thus have walkshed-adjusted densities roughly half their unadjusted densities.
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Table 3.4: Cluster Intensity Type Definitions

Intensity Type Average Walkshed-Adjusted
Activity Units per Square Mile

Extremely High >80,000

Very High 20,000–80,000

High 10,000–20,000

Low 5,000–10,000

Very Low 2,500–5,000

Minimal <2,500

Classifying clusters by use type is more challenging because, unlike density and

connectivity, it is not one-dimensional. Instead, five variables—the percentages of activity

units consisting of population and of workers in four industry categories—are involved.

As shown in Table 3.5 on page 139, the clusters are divided into eight categories: three

types of residential, four types of commercial based on the four industrial categories, and

a “mixed use” commercial category.

Clusters are first classified as residential or commercial based on whether the ma-

jority of activity units in them were residents or jobs. The choice of a 50% cut-off is fairly

arbitrary, but the exact value is not particularly important as relatively few neighborhoods

are that closely mixed. At least partly as a consequence of the fact that the residential-

commercial distinction is the most basic and strongly-enforced distinction in American

zoning codes (Hirt, 2014), either residential or commercial uses tend to dominate in a

given area.

138



Table 3.5: Cluster Use Type Definitions

Use Type Definition

Pure
Residential population is ≥ 90% of total activity units

Residential population is between 50% and 90% of total activity units

Walkable
Residential

all residential areas with a walkshed-adjusted density of at least 400
retail jobs

Mixed Use all non-residential areas with no job type ≥ 50% and with a
walkshed-adjusted density of at least 400 retail jobs

Retail non-residential areas where retail jobs are plurality of total jobs

Education /
Medical

non-residential areas where education and medical jobs are a plurality
of total jobs

Office non-residential areas where office jobs are a plurality of total jobs

Industrial non-residential areas where industrial jobs are a plurality of total jobs

Residential clusters are then divided into “pure residential” for areas that are at least

90% residents, a general residential category, and “walkable residential” for all residen-

tial that have walkshed-adjusted densities of at least 400 retail jobs per square mile. This

last cut-off was selected based on the densities of retail jobs in known walkable residen-

tial areas in Boston, San Francisco, and New York that developed before the rise of the

automobile along transit lines.

Commercial clusters are similarly subdivided, with four categories based on plural-

ity job types, plus a mixed-use category for areas with no majority job type that meet the

same walkshed-adjusted density cut-off of at least 400 retail jobs per square mile. This cat-

egory was intended to capture more modern, New Urbanist mixed-use areas, as opposed

to the historic streetcar suburbs largely identified by walkable residential cluster.
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Table 3.6: Cluster Housing Type Definitions

Housing Type Definition

Pure
Single-Family ≥ 90% of housing units are detached single-family

Single-Family
between 50% and 90% of housing units are detached single-family
or, if there is no majority housing type, SFH and mobile homes
together comprise a majority and SFH outnumber mobile homes

Multifamily:
Small Building

≥ 50% of housing units are row houses or apartments in buildings
of less than 10 units or, if there is no majority housing type, row
houses and apartments together comprise a majority and row
houses and apartments in buildings of less than ten units outnumber
apartments in large buildings

Multifamily:
Large Building

≥ 50% of housing units are apartments in buildings of more than
10 units or, if there is no majority housing type, row houses and
apartments together comprise a majority and row houses and
apartments in buildings of more than ten units outnumber row
houses and apartments in small buildings

Mobile Homes
≥ 50% of housing units are mobile homes or, if there is no majority
housing type, SFH and mobile homes together comprise a majority
and mobile homes outnumber SFH

Few Housing
Units

housing percentages sum to less than 90%, indicating that many
hexes lack housing units entirely

A similar approach is used for housing type categories, but without the initial resi-

dential/commercial split. As shown in Table 3.6 on page 140, four basic types were used

based on plurality housing type, with an additional category for clusters with at least 90%

of dwelling units single-family homes—included because of the preponderance of single-

family home neighborhoods in the US—and a category for clusters that consisted of areas

with very few housing units.1

1It is worth noting that these areas cannot be identified by low population alone, because some high-
population areas consist almost entirely of residents in housing that the Census classifies as “group quarters,”
such as dormatories, barracks, prisons, and health care facilities.
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Classifying clusters in this way made it possible to effectively map them, as demon-

strated in Figure 3.1 on page 142, which shows neighborhoods in Baltimore coded by

use type and intensity of activity. Due to the limited number of colors available, the two

non-walkable residential use categories are combined, as are the walkable residential and

mixed use categories.

The map shows that the city has a walkable core centered on high-intensity office

and medical areas, and that this core is surrounded by a belt of relatively high-intensity but

non-walkable residential development, much of which consists of areas that originally de-

veloped as streetcar suburbs but which currently lack significant retail. Moderate-intensity

neighborhoods of various use types are also visible in suburban areas, including Bel Air,

Laurel, Columbia, and Timonium. Similar maps are provided for a number of metropoli-

tan areas in Appendix H.

3.1.3 Simplifying Cluster Types for Metro Area Typology

Although the cluster classifications discussed in the previous section are useful for

mapping metro areas and for characterizing specific clusters, the large number of poten-

tial neighborhood types—six density types, five connectivity types, eight use types, and

six housing types produce 1,440 possible combinations, more than twice the number of

neighborhood clusters.

This profusion of neighborhood types does not lend itself to use in a clustering anal-

ysis, as it would require an unreasonable number of variables, comparable to the total num-

ber of metro areas to be clustered. Instead, as shown in Table 3.7 on page 144, clusters are
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Figure 3.1: Baltimore-Columbia-Towson, MD MSA map of land use and in-
tensity, measured by walkshed-adjusted density. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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grouped into a smaller number of types for use in metro area clustering. These types are

created based around the more common combinations of density, connectivity, use, and

housing, with a particular focus on high-density and otherwise urban areas.

In addition, to reduce the number of types, clusters with less than roughly 3,000

activity units per square mile are simply grouped together as “very-low density residential”

and “very-low density non-residential.” Since areas with densities below this are unlikely

to be effectively served with transit or to be otherwise traditionally walkable, there is no

need to distinguish them further.

As well as use types, activity densities, and—for some residential neighborhood

types—housing type, neighborhood types are identified as walkable or non-walkable,

based on the same 400 retail jobs per square mile walkshed-adjusted density cut-off used

previously.

As noted above, however, the clustering algorithm struggled to deal with high-

density neighborhoods because of their relative paucity. To correct for this, every hex

with a density above 30,000 activity units per square mile was checked by hand to con-

firm that the neighborhood type matched the criteria for assigning types to clusters. This

resulted in significant reassignments, particularly in New York, where a large number of

residential districts were misclassified as central business district based on density alone.

The resulting distributions of jobs and populations into each of the 22 neighborhood types

are shown in Table 3.8 on page 146.
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Table 3.7: Neighborhood Types for Metro Area Clustering

# Description
10th–90th Percentile
Activity Density
per Square Mile

Use Type Walkable

00 Major Central
Business District 150,000 – 485,000 Major CBD X

01 Non-Walkable
Residential 3,000 – 11,000 Residential

02 Very-High Density
Residential 56,000 – 115,000 Residential X

03 High Density
Residential 33,000 – 50,000 Residential X

04 Medium-Density
Large Apartments 15,000 – 30,000 Residential X

05 Medium-Density
Small Apartments 13,000 – 28,000 Residential X

06 Low-Density
Large Apartments 4,000 – 15,000 Residential X

07 Low-Density
Small Apartments 4,000 – 15,000 Residential X

08
Low-Density
Single-Family

Homes
3,000 – 12,000 Residential X

09 Medium-Density
Mixed Use 14,000 – 40,000 Mixed Use X

10 Low-Density Mixed
(High Connectivity) 3,000 – 16,000 Mixed Use X

11 Low-Density Mixed
(Low Connectivity) 3,000 – 15,000 Mixed Use X

12 High-Density
Retail 30,000 – 55,000 Retail X

13 Low-Density
Retail 3,000 – 13,000 Retail X

14 High-Density
Eds/Meds 13,000 – 58,000 Eds/Meds X

Continued on next page
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Table 3.7 – Continued from previous page

# Description
10th–90th Percentile
Activity Density
per Square Mile

Use Type Walkable

15 Low-Density
Eds/Meds 4,000 – 16,000 Eds/Meds

16 High-Density
Office 33,000 – 110,000 Office X

17 Medium-Density
Office 11,000 – 33,000 Office X

18 Low-Density
Office 3,000 – 15,000 Office

19 Low-Density
Industrial 3,000 – 14,000 Industrial

20 Very-Low Density
Residential 0 – 1,000 Very Low

Density

21 Very-Low Density
Non-Residential 0 – 4,000 Very Low

Density

It is notable how much more concentrated jobs are relative to population: 64% of

the population of metropolitan areas nationally is in very-low density residential hexes,

with another 4% in very-low density non-residential hexes, while roughly 22% of jobs are

found in each of very-low density residential and non-residential hexes. Despite this, jobs

also seem to be less concentrated in commercial hexes than population is concentrated

in residential hexes: in fact, a larger fraction of jobs than population is found in the low-

density small apartments cluster.

These patterns seem likely to be due to two factors: the effects of zoning on the

American built environment and agglomeration effects that encourage the co-location of

businesses. Zoning policies that favor large tracts of low-density, purely residential land

lead to low residential densities and most of the population living in residential areas,

while small job concentrations are likely to be surrounded by primarily residential areas.
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Table 3.8: Population and Jobs by Neighborhood Type

# Description Population
(millions)

% of
Pop.

Jobs
(millions)

% of
Jobs

00 Major Central
Business District 0.7 0.2% 4.0 3.4%

01 Non-Walkable
Residential 44.1 14.7% 7.7 6.5%

02 Very-High Density
Residential 5.0 1.7% 1.3 1.1%

03 High-Density
Residential 3.8 1.3% 0.9 0.7%

04 Medium-Density
Large Apartments 3.5 1.2% 0.9 0.8%

05 Medium-Density
Small Apartments 10.6 3.5% 2.0 1.7%

06 Low-Density
Large Apartments 4.1 1.4% 1.6 1.3%

07 Low-Density
Small Apartments 3.3 1.1% 1.9 1.6%

08
Low-Density
Single-Family

Homes
7.6 2.5% 3.2 2.7%

09 Medium-Density
Mixed Use 1.5 0.5% 3.6 3.1%

10 Low-Density Mixed
(High Connectivity) 3.5 1.2% 5.0 4.2%

11 Low-Density Mixed
(Low Connectivity) 2.1 0.7% 5.5 4.7%

12 High-Density
Retail 0.1 0.04% 0.5 0.4%

13 Low-Density
Retail 1.0 0.3% 3.2 2.7%

14 High-Density
Eds/Meds 0.8 0.3% 4.0 3.4%

Continued on next page
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Table 3.8 – Continued from previous page

# Description Population
(millions)

% of
Pop.

Jobs
(millions)

% of
jobs

15 Low-Density
Eds/Meds 1.1 0.4% 2.3 2.0%

16 High-Density
Office 0.6 0.2% 4.1 3.4%

17 Medium-Density
Office 0.4 0.1% 2.6 2.2%

18 Low-Density
Office 1.7 0.6% 5.3 4.5%

19 Low-Density
Industrial 1.7 0.6% 5.7 4.8%

20 Very-Low Density
Residential 191.1 63.6% 26.6 22.5%

21 Very-Low Density
Non-Residential 11.2 3.7% 26.3 22.2%

As Lang (2003) noted, even two decades ago, the majority of jobs in American

metropolitan areas were spread out in relatively small, low-density clusters embedded in

largely residential areas. This effect appears to have, if anything, becomemore pronounced

over time (Angel and Blei, 2016b). However, the concentration of more jobs than popula-

tion in large, dense clusters makes economic sense. Research on human capital and firm

agglomeration (Wheaton and Lewis, 2001; Rosenthal and Strange, 2004, 2008, 2020) has

shown that there are significant benefits to firm agglomeration on a number of scales, in-

cluding neighborhoods and even single buildings.
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3.2 Metro Area Job and Population Clusters

With the typologization of neighborhoods complete, the next step was the creation

of a typology of metropolitan areas. However, the list of twenty-two neighborhood types

proposed in the previous section proved far too large for useful k-means clustering of the

926 CBSAs studied. As a result, it was necessary to trim the set of variables further. In

doing so, I focused on two major considerations.

First, the distributions of jobs and of population in metropolitan areas are both im-

portant, but they are relatively independent. Some metropolitan areas, such as Los Ange-

les, have relatively high population densities without relatively high job densities, while

others—particularly smaller ones with a single major employer, such as Rochester, MN2—

have high job densities with very dispersed populations. Because of this, I decided to cre-

ate two separate typologies: one based on job distributions and one based on population

distributions.

Second, given the large number of possible combinations of variables, it makesmore

sense to try to develop a typology for a specific purpose, rather than a general-purpose one.

In this light, variables were chosen specifically based on amenability to public transporta-

tion and vital, walkable urban environments. For this purpose, the neighborhood types

from the previous section were condensed into the six shown in Table 3.9 on page 149.

These six neighborhood types cover densities above roughly 10,000 to 15,000 ac-

tivity units per square mile—the density at which transit service can start to break down

automobile dependence according to Newman and Kenworthy (2006)—and distinguish

densities above around 30,000 activity units per square mile, where providing parking in

the absence of public transportation begins to become significantly more expensive.
2Rochester, MN is the home of the Mayo Clinic
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Table 3.9: Neighborhood Types Used in Metro Area Typology

Neighborhood Type Component Types

Central Business
District 00–Major Central Business District

High-Density
Commercial

12–High-Density Retail
14–High-Density Ed/Meds
16–High-Density Office

Medium-Density
Commercial

09–Medium-Density Mixed-Use
17–Medium-Density Office

High-Density
Residential

02–Very-High Density Residential
03–High-Density Residential

Medium-Density
Residential

(Large Apartments)
04–Medium-Density Large Apartments

Medium-Density
Residential

(Small Apartments)
05–Medium-Density Small Apartments

Commercial and residential neighborhoods are distinguished because the agglom-

eration benefits of businesses locating near each other are presumably more present when

businesses are located in commercial areas, and very-high density central business dis-

tricts are distinguished because they are relatively unique environments and have been

suggested by Levy (2018) to be essential for high transit ridership in US cities.

Ideally, central business districts would be distinguished regardless of density, due

to their importance in the context of radial transit networks as discussed byWalker (2012),

but since my model considers only density and not spatial relationships between neighbor-

hoods, they can only be identified in the cases of CBDs at densities that no non-CBD areas

(outside of New York) reaCh. Large-apartment and small-apartment medium-density

areas are distinguished because they predominate in different cities and have different

effects on the streetscape. In particular, small-apartment medium-density largely corre-
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Table 3.10: National Prevalence of Dense Neighborhood Types

Neighborhood Type # of
Hexes

Population
(millions)

%
Population

Jobs
(millions)

%
Jobs

Central Business
District 109 0.7 0.2% 4.0 3.4%

High-Density
Commercial 1,586 1.5 0.5% 8.8 7.4%

Medium-Density
Commercial 2,149 1.9 0.6% 6.2 5.3%

High-Density
Residential 1,237 8.8 2.9% 2.1 1.8%

Medium-Density
Residential

(Large Apartments)
1,430 3.5 1.2% 0.9 0.8%

Medium-Density
Residential

(Small Apartments)
9,977 10.6 3.5% 2.0 1.7%

sponds to older, pre-World War II row house and duplex/triplex neighborhoods, while

large-apartment medium-density neighborhoods tend to be more recently built and some-

times more car-oriented.

The distributions of population and jobs in these six neighborhood types is shown in

Table 3.10 on page 150. While these neighborhood types contain 9% of the population and

20% of jobs across the metropolitan areas studied, there is significant variation between

metropolitan areas, as can be seen in the tables in Appendix J.

These tables, giving distributions of population and jobs among the six neighbor-

hood types for thirty-five metropolitan areas, are accompanied by maps, such as the map

of Baltimore presented in Figure 3.2 on page 152 showing the geographic distribution of

these neighborhood types in the metro areas.

The pattern seen in Baltimore is reminiscent of that seen in other Rust Belt cities,

albeit with a somewhat stronger center. A relatively small dense commercial core, with

only one hex cell of central business district density, is surrounded by a large area of
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medium-density small-apartment, largely consisting of pre-War rowhouses. Interestingly,

some patches of high-density residential are visible in gentrifying areas on the edge of the

commercial core: Mount Vernon and Fells Point. Outside of the pre-War city, occasional

high- and medium-density commercial areas are seen, but virtually no dense residential.
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Figure 3.2: Baltimore-Columbia-Towson, MD MSA map of dense neighbor-
hoods used in my metro area typology. The area shown is a 40-mile by 40-
mile square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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3.2.1 Job-Distribution Clusters

Job-distribution clusters were constructed in two steps: first, a k-means analysis

based only on jobs in CBD and high-density commercial hexes produced six clusters.

Then, the clusters were divided into sub-clusters using k-means analyses that took into

account the distributions of jobs in CBD, high-density commercial, and medium-density

commercial hexes, as well as all jobs in any residential hexes of at least medium density.

Perhaps not surprisingly, the resulting clusters and sub-clusters vary significantly in size,

with higher-density clusters containing significantly fewer metro areas.

The clusters are numbered in order of decreasing job density and cluster 1 consists of

only one metro area, New York, which has 24% of its jobs in CBD hexes, twice as many

as any other metro area in the country. Cluster 2 contains six metro areas—Chicago,

Washington, Boston, San Francisco, Seattle, and Honolulu—and cluster 3 contains 10.

Meanwhile, Cluster 4 contains 52metros, cluster 5 contains 165, and cluster 6—consisting

of metros with no CBD hexes and very few if any jobs in high-density commercial hexes—

contains 692 metro areas, more than two-thirds of the CBSAs in the United States.

Themetro areas in the first three clusters, which are shown in Table 3.11 on page 154,

are of the most potential interest from the standpoint of public transportation and an urban

environment, as they have at least 2% of their jobs in high-density job clusters. Still, there

is a lot of variation between these metro areas.

The sixmetro areas of cluster 2 haveCBD employment shares byAmerican standards—

between 7.2% and 13.9%—and even by European standards, as Levy (2018) calculated

that Paris’s CBD has roughly 7% of the jobs in Ile-de-France. These metro areas divide up
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Table 3.11: Metro Areas in Job Clusters 1, 2, and 3

CBSA Name Total Jobs Cluster CBD
Jobs

HD
Jobs

MD
Jobs

HD / MD
Residential

Jobs

New York 8,034,000 1 24.4% 5.0% 3.3% 21.8%

Honolulu 362,000 2a 8.2% 13.9% 6.2% 25.8%

Chicago 4,104,000 2b 12.5% 5.3% 5.7% 8.6%

Boston 2,419,000 2b 7.8% 12.4% 5.5% 10.5%

San Francisco 2,140,000 2b 13.9% 10.3% 11.6% 12.8%

Washington 2,723,000 2c 8.2% 17.6% 11.7% 5.2%

Seattle 1,697,000 2c 7.2% 11.0% 10.3% 4.8%

Philadelphia 2,587,000 3a 4.7% 8.6% 3.8% 7.3%

Pittsburgh 1,048,000 3a 4.2% 9.8% 3.3% 2.1%

Los Angeles 5,599,000 3b 3.0% 11.7% 11.7% 14.5%

San Jose 997,000 3b 2.5% 12.4% 15.0% 5.5%

Minneapolis 1,695,000 3c 3.3% 10.0% 7.8% 2.0%

Denver 1,300,000 3c 1.8% 12.1% 9.9% 1.7%

Baltimore 1,156,000 3c 2.0% 10.4% 5.4% 4.0%

Houston 2,608,000 3d 2.9% 7.9% 10.0% 2.2%

Charlotte 1,071,000 3d 2.6% 4.8% 4.8% 0.0%

Austin 837,000 3d 3.1% 6.1% 11.8% 0.5%
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fairly clearly into three groups. Honolulu (cluster 2a) is particularly distinguishable from

the mainland metro areas in that its jobs are particularly intermixed in residential areas:

nearly 26% of jobs in Honolulu are located in medium- or high-density residential areas.

Only New York, at 22%, is comparable in this: the next highest values for metro areas

nationally are 15% for Los Angeles and 13% for San Francisco.

The three metro areas of cluster 2b—Chicago, Boston, and San Francisco—can all

be characterized as legacy industrial cities that, unlike the industrial cities of the Rust Belt,

have managed to hold onto substantial job concentrations in their cores. Both Chicago and

San Francisco have over 10% of metro area jobs in CBD hexes and Boston’s value of 8%

would probably be in a similar range if several hexes in the CBD area were not just below

the density cut-off for the CBD-density cluster, as seen in the map of Boston in Figure 3.3

on page 156.

Washington and Seattle—cluster 2c—have somewhat weaker central business dis-

tricts, with 7–8% of metro area employment (and without the boundary effect Boston has),

and substantially fewer jobs in medium- and high-density residential areas, in part because

these metro areas, which do not have the same history as major pre-automobile industrial

cities, do not have nearly as large pre-zoning dense mixed-use neighborhoods. It is notable

that Washington, which includes Tysons Corner, one of the country’s largest edge cities,

and the one that Garreau (1992) particularly focused on in developing the concept, has the

highest fraction of its jobs in high-density-but-not-CBD-density hexes among US metro

areas with populations over 500,000.
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Figure 3.3: Boston-Cambridge-Newton, MA-NH MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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The ten metro areas of cluster 3 are significantly more weakly-centered, with 2–5%

of their jobs at CBD densities. Within this cluster, the two metro areas in cluster 3a—

Philadelphia and Pittsburgh—stand out as having the highest percentages of their jobs at

CBD densities, though in Pittsburgh these are divided between downtown Pittsburgh and

the university and cultural center of Oakland about three miles to the east.

Clusters 3b—LosAngeles and San Jose—and 3c—Minneapolis, Denver, andBaltimore—

have similarly weak CBDs, with 2–3% of metro area jobs and have 10–12% of metro area

jobs in high-density commercial clusters. The main difference seems to be that Los An-

geles and San Jose have relatively high levels of jobs in medium-density commercial and

medium- and high- density residential areas. However, a closer examination of the map of

clusters in San Jose shown in Figure 3.4 on page 158 shows that the apparent CBD-density

clusters in San Jose do not actually constitute a central business district, but major cam-

puses of technology companies such as Apple, suggesting that San Jose is perhaps closer

in structure to the metro areas in cluster 4.

The three metro areas in cluster 3d—Houston, Charlotte, and Austin—are all in

the Sunbelt, unlike those in cluster 3c. They have similar percentages of jobs in their

CBDs, but somewhat lower percentages of jobs in high-density commercial areas and in

residential areas, which seems consistent with their more recent growth.

In general, the metro areas of cluster 3 have job distributions that are rather less

amenable to effective public transit service than those in clusters 1 and 2, but they do still

have dense cores, and it seems plausible that improved transit service combined with plan-
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Figure 3.4: San Jose-Sunnyvale-Santa Clara, CA MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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ning policies intended to increase the concentration of jobs could be effective in increasing

their transit ridership. The metro areas in clusters 4, 5, and 6, on the other hand, are largely

lacking in dense central business districts.

The sub-clusters of cluster 4, shown in Table 3.12 on page 160 do have substantial

fractions of their jobs in high-density, but not CBD-density commercial neighborhoods.

With the exception of cluster 4b, which consists of small metro areas with a dominant

university or—in the case of theMayo Clinic in Rochester, MN—medical employer, which

have on average a quarter of their jobs in high-density commercial hexes, these clusters

have roughly the same fractions of jobs in high-density commercial hexes as the metro

areas in cluster 2.

The main distinction between these metro areas that is visible in my data is differ-

ences in the fractions of jobs in medium-density commercial areas: 9% in Dallas, which

is alone in cluster 4a; 6% in cluster 4d, which contains famously-sprawled cities such as

Atlanta and Phoenix; 3% in cluster 4c, which contains Las Vegas and Milwaukee, and 1%

in cluster 4e, containing Cleveland and Louisville. However, viewing the maps of these

metro areas in Appendix J shows another distinction that does not match up entirely well

with the clusters: some of the metro areas, such as Atlanta and Dallas, are quite polycentric

with significant edge city job clusters, while others are much less so.

With the exception of cluster 5a, consisting of Miami and Jacksonville, the metro

areas in clusters 5 and cluster 6, shown in Table 3.13 on page 162, have no hexes with

CBD-level densities. The main difference between the two clusters is that metro areas in

cluster 5 have 4–8% of their jobs in high-density commercial neighborhoods, while metro

areas in cluster 6 have far fewer jobs in such neighborhoods.
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Table 3.12: Sub-Clusters of Job Cluster 4

Cluster # of
Metros

Mean
CBD
Jobs

Mean
HD
Jobs

Mean
MD
Jobs

Mean
HD / MD
Residential

Jobs

Example Metros

4a 1 1% 11% 9% 1% Dallas, TX

4b 5 0% 24% 1% 0%

Rochester, MN
Bloomington, IL
Bloomsburg, PA
Wisconsin
Rapids, WI
Sayre, PA

4c 10 0% 13% 3% 3%

Las Vegas, NV
Milwaukee, WI
New Orleans, LA
Hartford, CT
Rochester, NY
New Haven, CT
Syracuse, NY

4d 13 0% 12% 6% 0%

Atlanta, GA
Phoenix, AZ
St. Louis, MO
Orlando, FL
Portland, OR
Indianapolis, IN
Nashville, TN
Des Moines, IA
Durham, NC
Spokane, NC

4e 23 0% 12% 1% 0%

Cleveland, OH
Louisville, KY
Winston-
Salem, NC
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While the majority of metro areas in these clusters are relatively small, not all of

them are: cluster 5d, in particular, contains ten metro areas of over a million people, in-

cluding Detroit, with over four million, and Tampa, with over 3 million. Perhaps the most

impressive example of a large metro area without job concentration, however, is Riverside,

CA, which has a population of nearly four-and-a-half million people and less than 3% of

its jobs in high-density commercial neighborhoods.

Riverside’s particular paucity of high-density jobs can partly be explained by its

specialization in the warehousing and logistics industries, which are traditionally relatively

low-density, and partly by the fact that a significant fraction of the metro area serves as a

bedroom community for Los Angeles. As Loh and Goger (2020) note, the Riverside-San

Bernardino-Ontario, CA MSA is likely to be merged into the Los Angeles-Long Beach-

Anaheim, CAMSA in the next round of CBSA redefinitions by the Office of Management

and Budget.
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Table 3.13: Sub-Clusters of Job Clusters 5 and 6

Cluster # of
Metros

Mean
CBD
Jobs

Mean
HD
Jobs

Mean
MD
Jobs

Mean
HD / MD
Residential

Jobs

Example Metros

5a 2 1% 8% 6% 3% Miami, FL
Jacksonville, FL

5b 15 0% 6% 10% 1%
Sacramento, CA
Grand Rapids, MI
Omaha, NE

5c 17 0% 7% 4% 5%
San Diego, CA
Providence, RI
Buffalo, NY

5d 28 0% 8% 5% 0%

Detroit, MI
Tampa, FL
San Antonio, TX
Kansas City, MO
Columbus, OH

5e 40 0% 7% 0% 0% Memphis, TN
Tulsa, OK

5f 63 0% 4% 2% 0%
Virginia Beach, VA
Raleigh, NC
Tucson, AZ

6a 37 0% 2% 2% 1% Riverside, CA
Stockton, CA

6b 25 0% 0% 10% 0%
El Paso, TX
Fayetteville, AR
Boulder, CO

6c 3 0% 0% 3% 11%
State College, PA
Rexburg, ID
Butte, MT

6d 14 0% 0% 1% 4% Salinas, CA
Hagerstown, MD

6e 613 0% 0% 0% 0% Bakersfield, CA
Oxnard, CA
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3.2.2 Population-Distribution Clusters

Population-distribution clusters were constructed in two steps: first, a k-means anal-

ysis based only on population in CBD and high-density hexes, treated as a single variable,

produced four clusters. Then, the clusters were divided into sub-clusters using k-means

analyses that took into account the concentration of population in high-density and CBD

hexes, medium-density large-apartment hexes, medium-density small-apartment hexes,

and medium-density commercial hexes. Because, outside of New York, only a very small

fraction of the population is present in CBD and high-density commercial hexes, it did not

make sense to distinguish between population in high-density commercial and residential

hexes.

Perhaps not surprisingly, the resulting clusters and sub-clusters vary significantly in

size, with higher-density clusters containing significantly fewer metro areas. The clusters

are numbered in order of decreasing job density and cluster 1 consists of only one metro

area, New York, which has 36% of its population in high-density hexes, more than three

times the fraction for any other metro area in the county.

Cluster 2 contains sevenmetro areas—LosAngeles, Chicago,Washington, Philadel-

phia, Boston, San Francisco, and Honolulu—and cluster 3 contains 65. Meanwhile, Clus-

ter 4 contains 853metro areas with half a percent or less of their population in high-density

hexes of any kind.
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Table 3.14: Metro Areas in Population Clusters 1 and 2

CBSA Name Total
Population Cluster HD

Pop.

MD
Large

Apt. Pop.

MD
Small

Apt. Pop.

MD
Comm.
Pop.

New York 19,274,000 1 35.9% 2.7% 10.9% 0.7%

Los Angeles 13,242,000 2a 5.6% 7.6% 16.3% 1.8%

San Francisco 4,654,000 2a 9.8% 3.6% 14.8% 2.0%

Honolulu 893,000 2b 11.5% 5.0% 4.7% 0.9%

Chicago 9,511,000 2c 6.0% 1.3% 13.8% 0.8%

Philadelphia 6,030,000 2c 5.1% 0.2% 15.2% 0.4%

Boston 4,795,000 2c 7.8% 1.0% 13.9% 1.4%

Washington 6,081,000 2d 4.6% 2.8% 3.1% 2.2%

The metro areas in the first two clusters, which are shown in Table 3.14 on page 164,

are of the most potential interest from the standpoint of public transportation and an urban

environment, as they have over 4% of their populations in high-density neighborhoods..

Still, there is a lot of variation between these metro areas.

As with jobs, New York is a substantial outlier, with 36% of its population in high-

density hexes and another 14% in medium-density hexes. Honolulu gets its own sub-

cluster again, cluster 2b, but it is less obviously distinct from other metro areas, though it

has a higher fraction of its population in high-density hexes than the other cluster 2 metros

and only 5%, as opposed to 14–16% of its population in medium-density small-apartment

neighborhoods.

Los Angeles and San Francisco in cluster 2a and Chicago, Philadelphia, and Boston

in Cluster 2c have quite similar population distributions, with 5–10% of their populations

in high-density neighborhoods and 14–16% in medium-density small-apartment neigh-

164



borhoods. The separate sub-cluster for the California metros seems to be due to their

larger fraction of the population, 3–8% versus 0–1%, in medium-density large-apartment

neighborhoods.

Washington, DC, which gets its own sub-cluster, cluster 2d, is as much of an outlier

as Honolulu, and the least population-dense of the eight metro areas in clusters 1 and 2.

At 4.6%, it has the lowest fraction of its population in high-density neighborhoods, albeit

by a small margin, and its 3.1% in medium-density small-apartment neighborhoods is ten

percentage points smaller than any other cluster 2 metro area except Honolulu.

The sixty-seven metro areas in Cluster 3 have significantly lower fractions of their

population in high- and medium- density neighborhoods, but are distinguishable from

those in Cluster 4 by having 1-3% of their populations in high-density neighborhoods,

rather than less than half a percent.

Of the sub-clusters of cluster 3, shown in Table 3.15 on page 166, clusters 3a, 3b,

and 3c are both the smallest and most similar. These metro areas—Miami, San Diego, San

Jose, Seattle, Madison, and four smaller college towns—are notable for having significant

fractions of their populations in medium-density large-apartment neighborhoods.

Cluster 3d, on the other hand, which consists almost entirely of Rust Belt metro ar-

eas, is made up of cities with significant fractions of their population in medium-density

small-apartment neighborhoods. Clusters 3e and 3f, on the other hand, have very small

fractions of their populations in such areas, and mostly consist of cities with less substan-

tial pre-War industrial histories. Cluster 3e is notable because it consists of five college

towns and four metro areas—Minneapolis, Denver, Portland, and Austin—which have
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Table 3.15: Sub-Clusters of Population Cluster 3

Cluster # of
Metros

Mean
HD
Pop.

Mean
MD
Large
Apt.
Pop.

Mean
MD
Small
Apt.
Pop.

Mean
MD

Comm.
Pop.

Example Metros

3a 4 1% 5% 3% 1%

San Diego, CA
San Jose, CA
Ann Arbor, MI
Iowa City, IA

3b 3 3% 2% 3% 2%
Seattle, WA
Madison, WI
Santa Barbara, CA

3c 3 3% 5% 1% 0%
Miami, FL
Urbana-Champaign, IL
State College, PA

3d 15 1% 0% 7% 1%

Baltimore, MD
Milwaukee, WI
Hartford, CT
Worcester, CT
Bridgeport CT
Albany, NY

3e 9 1% 1% 1% 2%

Minneapolis, MN
Denver, CO
Portland, OR
Austin, TX

3f 33 1% 0% 0% 0%

Dallas, TX
Atlanta, GA
Orlando, FL
Pittsburgh, PA
Indianapolis, IN
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good reputations with urbanists and budding transit networks, but relatively low transit

ridership. These metro areas have 3-5% of their populations in high- or medium-density

neighborhoods.

The metro areas of cluster 4 are distinguished by having very few if any of their res-

idents in high-density neighborhoods. Despite this, there is some notable variation among

the sub-clusters, shown in Table 3.16 on page 168. Cluster 4a consists of three college

towns with roughly 5% of their residents in medium-density large-apartment neighbor-

hoods; one suspects that these residents are largely college students. Cluster 4c, on the

other hand, which has closer to 2% of metro populations in this neighborhood type, con-

sists mostly of larger college towns, but also contains Houston and Las Vegas.

Cluster 4b, on the other hand, is notable primarily for its large fraction—on average,

roughly 5%—of metro areas’ populations living in medium-density small apartments. As

with the other clusters notable for this neighborhood type, it primarily consists of metro

areas that were industrial centers before World War II, such as Providence, New Orleans,

and Buffalo.

The remaining two sub-clusters of cluster 4 have very small fractions of their pop-

ulations at high or medium density. Cluster 4e consists of a mix of sunbelt sprawl—

Phoenix, Riverside, Tampa, and Charlotte—and Rust Belt cities with especially hollowed-

out cores—Detroit and St. Louis. Cluster 4f, which contains two-thirds of the metro areas

in the country, consists of small metros of less than a million people: Greenville, SC and

Bakersfield, CA are the largest in the cluster.
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Table 3.16: Sub-Clusters of Population Cluster 4

Cluster # of
Metros

Mean
HD
Pop.

Mean
MD
Large
Apt.
Pop.

Mean
MD
Small
Apt.
Pop.

Mean
MD

Comm.
Pop.

Example Metros

4a 3 0% 4.6% 0% 0%
Corvallis, OR
Mt. Pleasant, MI
Butte, MT

4b 17 0.2% 0.1% 4.8% 0.4%
Providence, RI
New Orleans, LA
Buffalo, NY

4c 12 0.2% 1.8% 0.7% 0.4%

Houston, TX
Las Vegas, NV
Lansing, MI
Fort Collins, CO
Boulder, CO

4d 22 0.1% 0% 0.3% 1.2%

Salt Lake City, UT
Omaha, NE
Durham, NC
Spokane, WA
Anchorage, AK

4e 126 0.3% 0.1% 0.2% 0.2%

Phoenix, AZ
Riverside, CA
Detroit, MI
Tampa, FL
St. Louis, MO
Charlotte, NC

4f 671 0% 0% 0% 0%
Greenville, SC
Bakersfield, CA
McAllen, TX
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3.3 Discussion

The primary products of this project are the neighborhood typology developed in

Section 3.1 and the metro area typologies developed in Section 3.2. However, these ty-

pologies are not intended somuch as ends in themselves as means to a better understanding

of the US urban environment and metropolitan areas.

In this section, I will discuss several interesting results based on my initial analysis,

along with possibilities for future work. Further discussion of the possible applications of

these typologies to public transportation can be found in Chapter 4.

In Section 3.3.1, I note a correlation between metro areas with relatively large per-

centages of their populations living in medium-density neighborhoods consisting of row

houses and small apartment buildings and cities—especially in the Northeast—with his-

tories as significant industrial centers before World War II. I then consider the possibility

that more detailed analysis of housing type and density might reveal more about historical

types of American neighborhood development.

Section 3.3.2 explores what features of the urban environment lead a city to be per-

ceived as “dense” or “sprawling” in the context of the paradoxical observation that Los

Angeles is generally perceived as a sprawling, low-density metro area despite rating highly

on most metrics of density. In Section 3.3.3, I investigate the differences in the densities

experienced by residents of different races and employees of different income levels in

large American metro areas.

169



3.3.1 Housing Type and Neighborhood History

The population-distribution-based clusters ofmetro areas introduced in Section 3.2.2

are based on four variables: the fraction of a metro area’s population in high-density neigh-

borhood types and the fractions of its population in each of three types of medium-density

neighborhood: commercial neighborhoods—those where jobs outnumber residents—and

what I call “large apartment” and “small apartment” residential neighborhoods.

These last two categories are distinguished based on housing type: large-apartment

neighborhoods have the majority of their housing in multi-family buildings of at least

ten units while small-apartment neighborhoods have the majority of their housing in row

houses or multi-family buildings of less than ten units. The choice to set the cut-off at

ten units rather than, for example, eight or twelve was somewhat arbitrary and partially

dictated by the building-size bins that ACS housing unit counts are provided in.

However, the distinction between row houses and small apartment buildings—a

category which also includes duplex houses and the traditional New England “triple-

decker”—on one hand and larger apartment buildings with dozens of residents on the

other is not especially arbitrary. When density and land use are held constant, smaller

buildings may be preferable from an urban vitality standpoint because their residents are

closer to the street and thus perhaps more likely to make more, shorter trips around their

neighborhood and more able to participate in what Jacobs (2011, 66) referred to as the

“sidewalk ballet.”
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The type of housing found in a neighborhood can also provide a clue to the time

and context in which it was built. One example of this can be seen in the distribution

of medium-density small-apartment neighborhoods among American metro areas. The

percentage of the population living in this neighborhood type in population-distribution

clusters 2a, 2c, 3d, and 4b (see Tables 3.14–3.16 on pages 164–168) reveals a pattern that

cuts across clusters and thus across the population-density distributions of these metro

areas.

Table 3.17 on page 172 lists metro areas over 500,000 residents with at least 3% of

their residents in medium-density small-apartment neighborhoods, sorted by the percent-

ages of their populations in this neighborhood type. Of the 28 metro areas included, 17 are

former industrial cities in the Northeast, three—Chicago, Milwaukee, and New Orleans—

are former industrial cities in the Midwest or South, seven are cities in the West of varying

industrial histories, and one is Washington, DC, which has relatively little industrial his-

tory.

Besides geography, there are several other ways to break these metro areas up into

groups. One is to consider the ratios of metro areas’ populations in medium-density

large-apartment and medium-density small-apartment neighborhoods. Of the 28 met-

ros, three—San Jose, San Diego, Honolulu—have higher fractions of their populations

in medium-density large-apartment than medium-density small apartment neighborhoods

and another two—Washington and Los Angeles—have 90% and 45% as many residents in

medium-density large-apartment neighborhoods than in medium-density small apartment

neighborhoods.
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Table 3.17: Metro Areas with High Medium-Density Small-Apartment Populations

CBSA Name Population
High

Density
Pop.

Medium
Density

Large Apt.
Pop.

Medium
Density

Small Apt.
Pop.

Medium
Density
Comm.
Pop.

Los Angeles, CA 13,242,000 5.6% 7.6% 16.3% 1.8%
Philadelphia, PA 6,030,000 5.1% 0.2% 15.2% 0.4%
San Francisco, CA 4,654,000 9.8% 3.6% 14.8% 2.0%
Boston, MA 4,795,000 7.8% 1.0% 13.9% 1.4%
Chicago, IL 9,511,000 6.0% 1.3% 13.8% 0.8%
Providence, RI 1,607,000 0.6% 0% 13.3% 0.4%
New York, NY 19,274,000 35.9% 2.7% 10.9% 0.7%
Milwaukee, WI 1,572,000 0.8% 1.5% 9.4% 1.0%
Bridgeport, CT 931,000 1.4% 1.5% 8.4% 1.2%
Baltimore, MD 2,758,000 1.6% 0.1% 6.7% 0.7%
Buffalo, NY 1,123,000 0.3% 0% 6.7% 0.6%
Lancaster, PA 533,000 0.8% 0% 6.3% 1.0%
Allentown, PA 821,000 2.0% 0% 5.5% 0%
Springfield, MA 692,000 0.7% 0% 5.3% 0.7%
Worcester, MA 931,000 0.7% 0.2% 5.1% 0%
Scranton, PA 549,000 0.4% 0.0% 5.0% 0.7%
San Jose, CA 1,980,000 0.8% 6.3% 4.9% 1.4%
San Diego, CA 3,211,000 1.4% 5.1% 4.7% 1.0%
Honolulu, HI 893,000 11.5% 5.0% 4.7% 0.9%
New Orleans, LA 1,248,000 0.6% 0.4% 4.6% 0.9%
Albany, NY 864,000 1.1% 0.2% 4.4% 0.5%
Oxnard, CA 838,000 0.1% 0.3% 4.4% 0%
Hartford, CT 1,204,000 0.9% 0.2% 4.0% 0.5%
New Haven, CT 855,000 1.6% 0.4% 3.8% 0.4%
Provo, UT 598,000 0.2% 0% 3.4% 0.5%
Poughkeepsie, NY 660,000 0.2% 0% 3.3% 0.4%
Washington, DC 6,081,000 4.6% 2.8% 3.1% 2.2%
Harrisburg, PA 553,000 0.1% 0% 3.1% 0.1%
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Unlike these five metro areas—none of which have particularly strong histories as

pre-World War II industrial towns and all of which other than Washington are located in

California or Hawaii—the remaining 23 metros each have at least four times as meant

residents in medium-density small-apartment neighborhoods as in medium-density large-

apartment neighborhoods. Furthermore, the remaining 23 metro areas were all signifi-

cant industrial or port cities in the late-19th and early-20th Centuries with the exception

of two—Oxnard, CA and Provo, UT—that are both relatively small (under a million res-

idents) and have less than 5% of their populations in medium-density small apartment

neighborhoods3.

It is notable that the remaining 23 metro areas include all of the major and several

of the more minor late-19th and early-20th Century industrial centers east of the Alleghe-

nies while containing only five—Buffalo, Chicago, Milwaukee, New Orleans, and San

Francisco—west of them. It is possible that the medium-density small-apartment built

environment was primarily a phenomenon of Northeastern cities and that the four cities

west of the Alleghenies are simply outliers.

However, a recent study by Rowlands and Loh (2021) makes it possible to test an

alternative hypothesis: that the fraction of a former industrial metro area’s population in

medium-density small-apartment neighborhoods is related to how much its core hollowed

out during the white flight and urban disinvestment of the second half of the 20th Cen-

tury. This seems plausible since a large population loss in a metro area’s urban core would
3One possible explanation for Provo’s unusually high fraction of its population in medium-density small-

apartment neighborhoods is that it is notably home to both Brigham Young University and the Mormon
Missionary Training Center. Particularly relevant to this is that Brigham Young University only allows
unmarried students to live off-campus in apartments with landlords who commit to ensuring their tenants
obey the University’s rules against certain mixed-gender socialization, a rule which in practice may require
smaller buildings where landlords can more easily monitor their tenants.
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naturally depopulate its late-19th–early-20th Century housing stock, resulting in lower pop-

ulations in these neighborhoods and in many of these neighborhoods no longer qualifying

as medium-density.

Rowlands and Loh (2021) calculated the 1950 and 2018 populations of the 44 present-

day CBSAs that contain what were the 50 largest US cities in 1950, the last Decennial

Census year before urban populations began to decline. More relevantly at present, they

also calculated the 1950 and 2018 populations within the 1950 city limits of the principal

cities of the 1950 Standard Metropolitan Areas contained in these present-day CBSAs.

This data makes it possible to quantify how much population the cores of these cities lost

over the past sixty-eight years.

Table 3.18 on page 175 shows the present-day fraction of metro area population in

medium-density small-apartment neighborhoods for the twenty-three metro areas identi-

fied above. It also includes the 1950–2018 population change within 1950 city limits for

the ten of these metro areas included in Rowlands and Loh (2021)’s dataset.

The fact that only three of the metro areas with between 3% and 9% of their popu-

lations in medium-density small-apartment neighborhoods are included in Rowlands and

Loh (2021)’s dataset makes it hard to determine if there is a correlation. However, with the

addition of several Midwestern Rust Belt metro areas in their dataset that have lower frac-

tions of their populations inmedium-density small-apartment neighborhoods—Pittsburgh,

Columbus, Cincinnati, Detroit, St. Louis, and Kansas City—it becomes possible to plot

a set of metro areas spanning population changes from –63% to +13% and fractions of

metro area population in medium-density small-apartment neighborhoods from 0.2% to

15.2%.
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Table 3.18: Selected Metro Areas with Medium-Density Small-Apartment Populations

CBSA Name
2018 Metro

Area
Population

2018 Metro Area
Medium-Density
Small-Apartment

Population

1950–2018
Population

Change in 1950
City Limits

Philadelphia, PA 6,030,000 15.2% –24%
San Francisco, CA 4,654,000 14.8% +13%
Boston, MA 4,795,000 13.9% –6%
Chicago, IL 9,511,000 13.8% –23%
Providence, RI 1,607,000 13.3% –22%
New York, NY 19,274,000 10.9% +5%
Milwaukee, WI 1,572,000 9.4% –35%
Bridgeport, CT 931,000 8.4% -
Baltimore, MD 2,758,000 6.7% –35%
Buffalo, NY 1,123,000 6.7% –55%
Lancaster, PA 533,000 6.3% -
Allentown, PA 821,000 5.5% -
Springfield, MA 692,000 5.3% -
Worcester, MA 931,000 5.1% -
Scranton, PA 549,000 5.0% -
New Orleans, LA 1,248,000 4.6% –31%
Albany, NY 864,000 4.4% -
Oxnard, CA 838,000 4.4% -
Hartford, CT 1,204,000 4.0% -
New Haven, CT 855,000 3.8% -
Provo, UT 598,000 3.4% -
Poughkeepsie, NY 660,000 3.3% -
Harrisburg, PA 553,000 3.1% -
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While the resulting plot does show a positive correlation betweenmetro area popula-

tion change and fraction of population inmedium-density small-apartment neighborhoods,

the R2 value is only 0.60. Understanding why this neighborhood type seems to correlate

particularly with Northeastern and notMidwestern industrial cities likely requires research

into the history of streetcar suburbs and pre-WorldWar II workforce housing in these cities.

However, the general approach introduced here seems promising for identifying

neighborhoods with similar histories in different metro areas, especially if one breaks

housing types down into smaller categories. Measuring housing unit density rather than

population density could potentially also help with correcting for the effects of population

movement since a neighborhood was built.

3.3.2 Resolving the Paradox of Los Angeles

One of the properties of a built environment that people tend to form intuitive opin-

ions of when they spend time in it is density. Nearly everyone has an opinion of the relative

densities of the places they live and work, and often even of places they visit on vacation

or see on television.

What these opinions are based on, however, is not always as clear, even to the people

forming them, and they do not always correspond particularly well with population, job,

or activity density. For example, it is common for people to complain of tall buildings

as indicating “too-high” a density for their neighborhood, even though they may actually

have less usable floor space and house fewer residents or jobs than shorter buildings that

cover more of the ground.
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Los Angeles provides an interesting example of this effect: the city’s name has be-

come a byword for low-density sprawl in American culture and its reputation for low den-

sity is near-universal, except for a relatively few contrarians who point out a paradoxical

fact: by most simple measures of population density, Los Angeles is one of the densest

metro areas in the United States!

Measuring the density of metropolitan statistical areas directly is relatively mean-

ingless, since MSAs are defined in terms of county boundaries and so often contain large

tracts of nearly-uninhabited land that may have little connection to the city whose metro

area they are technically part of. However, as discussed in Section 2.1.1, Census-defined

urbanized areas (UAs) are specifically intended to characterize continuous areas of urban

and suburban density. Their lower-density cut-off excludes the outer reaches of exurbia

along with rural and uninhabited areas, but they do include most areas that would reason-

ably be considered “urban.”

Despite Los Angeles’s reputation for sprawl, the Los Angeles urbanized area has the

highest population density in the country, followed by San Francisco and San Jose. New

York—justifiably the American standard of a big, dense city—comes in fourth among

urbanized areas of at least 100,000 residents. It is strange enough that these three coastal

Californian urbanized areas—two of them with reputations for sprawl—are denser than

New York, but Table 3.19 on page 178—which shows the twenty-five highest-population-

density urbanized areas with populations of at least 800,000 residents—demonstrates that

the situation is even more counter-intuitive.
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Table 3.19: Major Urbanized Areas with Highest Population Densities

Rank Urbanized Area Population
Density ( / sq. mi.)

1 Los Angeles 7,000
2 San Francisco 6,300
3 San Jose 5,800
4 New York 5,300
5 Honolulu 4,700
6 Las Vegas 4,500
7 Miami 4,400
8 San Diego 4,000
9 Fresno 3,800
10 Salt Lake City 3,700
11 Sacramento 3,700
12 Denver 3,600
13 New Orleans 3,600
14 Washington 3,500
15 Chicago 3,500
16 Portland 3,500
17 Riverside 3,500
18 Phoenix 3,200
19 Baltimore 3,100
20 Seattle 3,000
21 Houston 3,000
22 Albuquerque 3,000
23 San Antonio 2,900
24 Dallas 2,900
25 Virginia Beach 2,800
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While several of the nation’s reputedly-densest metro areas—New York, Chicago,

San Francisco, and Washington, and Honolulu, all of which were in my my population

distribution clusters 1 and 2—make the top twenty-five, Boston and Philadelphia are com-

pletely missing and most of the list, including at the highest ranks, are made up of Sunbelt

metro areas with reputations for being sprawling and car-oriented.

A similar result is achieved if we take the population density of those parts of metro

areas included in my hex cells, which include all land with densities of at least 100 activity

units per square mile: a threshold significantly lower than the Census Bureau uses for ur-

banized areas, and without the requirement that urbanized areas be contiguous. Table 3.20

on page 180 shows the twenty-five major metro areas with the highest population densities

by this standard.

The results here are relatively similar: Tampa, Philadelphia, Bridgeport, Boston,

Orlando, Detroit, and Milwaukee have replaced Fresno, New Orleans, Portland, Albu-

querque, San Antonio, Dallas, and Virginia Beach, but the other eighteen metro areas are

still present in a similar order. Metro area population density brings several generally-

understood-as-dense metro areas into the top twenty-five, but it also brings two definite

Rust Belt metros—Detroit and Milwaukee—in.

What appears to be going on is that, for the most part, the major urbanized areas

with the highest population densities are simply themost geographically constrainedmajor

urban areas because, regardless of how low-density their cores may be, they are unable to

form the vast tracts of very-low-density exurbia that surround most American metro areas.
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Table 3.20: Major Metro Areas with Highest Population Densities

Rank Metro Area Population
Density ( / sq. mi.)

1 Los Angeles 5,100
2 New York 3,700
3 San Francisco 3,700
4 Miami 3,600
5 Honolulu 3,200
6 San Jose 3,000
7 Las Vegas 2,700
8 San Diego 2,200
9 Salt Lake City 1,800
10 Tampa 1,700
11 Philadelphia 1,700
12 Chicago 1,600
13 Denver 1,600
14 Bridgeport 1,600
15 Phoenix 1,600
16 Boston 1,600
17 Washington 1,600
18 Baltimore 1,500
19 Seattle 1,500
20 Orlando 1,500
21 Sacramento 1,400
22 Houston 1,400
23 Detroit 1,300
24 Riverside 1,300
25 Milwaukee 1,200
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Los Angeles, San Francisco, San Jose, Honolulu, and San Diego are all crowded

into relatively narrow patches of flat land between the Pacific Ocean and steep mountains.

Likewise, Salt Lake City is bounded to the east by mountains and to the west by the Great

Salt Lake and Riverside is nestled in a valley between two mountain ranges, while Miami

is bounded to the west by swamp and to the east by the Atlantic Ocean and New Orleans is

surrounded by swamp and Lake Pontchartrain. Orlando is also surrounded by swampy land

for the most part, and the Tampa metro area is significantly constrained from expanding

by Tampa Bay and the Gulf of Mexico.

Although they are less constrained by physical geography, Las Vegas, Portland, and

Sacramento are constricted by legal and economic factors. Las Vegas is hemmed in by

large tracks of Federally-owned wilderness on nearly all sides, while Portland is partly

constrained by an urban growth boundary. As for Sacramento, it is located in the Central

Valley of California, perhaps themost economically productive agricultural area in the US.

As a result, the high value of the farmland surrounding the city makes it unlikely to be sub-

divided for low-density housing. Supporting this theory, other Central Valley urbanized

areas too small to appear in Table 3.19—Stockton, Modesto, Fresno, and Bakersfield—

have very similar population densities to Sacramento.

Denver and Phoenix both have at least one direction in which they can expand rel-

atively unimpeded, but they—like many of the other metro areas in the previous two

tables—are in quite dry areas. Lang (2002)’s distinction between wet and dry sunbelt

cities—also discussed in Lang (2003, 108-110)—may come into play here. In the wet cli-

mates of the Northeast, South, much of the Midwest, and the Pacific Northwest east of the

Cascades, suburban and exurban developments can use wells and septic tanks to avoid the
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expensive of extending water and sewer connections, and the land on the fringes of metro

areas is generally privately owned. On the other hand, in the dryer climates of much of

the West, water is a very limited resource that is piped in from hundreds of miles away

and many metro areas are surrounded by large tracts of Federally-owned land that is not

available for development.

The appearance of Detroit and Milwaukee on the high-population-density metro

areas list is a bit harder to explain, but it may be a function of the fact that both metro

areas have stagnant populations and are located in states with small counties, which may

have prevented the development of sufficient exurban sprawl to bring outlying counties

into their metro areas. Many of the densest metropolitan areas, it seems, do not actually

have particularly dense cores. Instead, they have high population densities because they

are lacking the large tracts of very low density suburban and exurban land that surround

most American cities: land that is home to relatively little of most metro areas’ populations

despite taking up the vast majority of their area.

When we speak of population density, however, what we are really interested is the

densities that most people live at and experience regularly. The existence of a belt of very-

low-density exurbia on the edge of a metro area is not particularly significant to most of

the metro area’s residents and visitors; indeed, they may not even be aware of it, since it

is unlikely to contain many destinations of interest to them.
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One way to assess the local densities that most people in a metro area actually ex-

perience is to take a population-weighted average of the densities of smaller, walking-

distance-sized districts:

dweighted =

∑
i dipi∑
i pi

where di is the density and pi is the population of the ith district. Using a population-

weighted average effectively calculates the population density of the district containing the

average resident, rather than the population density of the average district (Craig, 1984;

Wilson et al., 2012).

Table 3.21 on page 184 is a list of the twenty-five major metropolitan areas with

the highest population-weighted densities, using my quarter-mile radius hex cells as the

districts for the weighted average. This has two advantages over Wilson et al. (2012, 21-

32)’s calculation of population-weighted densities using Census tracts: all the hex cells are

roughly the same size, and their size was specifically selected to approximate a pedestrian-

scale neighborhood.

With this analysis, some order seems to have been restored to the universe: un-

like with the two pure population-density measures, New York decisively has the highest

population-weighted density density of any major metropolitan area in the US. However,

Los Angeles is still in third place and San Jose is in fifth. While calculating a population-

weighted density instead of a normal population density does increase the rankings of the

strongly-centered metro areas in population-distribution clusters 1 and 2, geographically-

constrained sunbelt metros still rank well and we are still faced with the fact that Los

Angeles comes in in third place.
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Table 3.21: Major Metro Areas with Highest Population-Weighted Densities

Rank Metro Area
Population-

Weighted Density
( / sq. mi.)

1 New York 29,300
2 San Francisco 12,500
3 Los Angeles 11,400
4 Honolulu 11,400
5 San Jose 9,100
6 Chicago 8,800
7 Boston 8,400
8 Miami 8,300
9 Philadelphia 8,100
10 San Diego 7,800
11 Washington 7,200
12 Las Vegas 7,100
13 Seattle 5,900
14 Baltimore 5,700
15 Bridgeport 5,700
16 Denver 5,600
17 Sacramento 5,300
18 Milwaukee 5,200
19 Providence 5,200
20 Salt Lake City 5,200
21 Phoenix 5,200
22 Houston 5,200
23 Riverside 5,200
24 Portland 5,100
25 New Orleans 5,100
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In fact, an examination of the land use and intensity map of Los Angeles in Fig-

ure 3.5 on page 186 suggests that this result may not be as ridiculous as it first seems.

Los Angeles’s high population-weighted population density is not solely the result of the

absence of very-low-density exurban sprawl. The city actually contains rather large areas

of relatively-high density residential areas. Many of these areas even have enough retail

to be classified as walkable in my neighborhood typology.

Why, then, is it commonly accepted wisdom that Los Angeles is not dense? The only

reasonable conclusion, I think, is that population density—the number of people per square

mile—is not actually what most people are evaluating when they judge a place as “dense”

or “sprawling.” This makes sense on a practical and psychological level. Residents—

unless they are people one knows or has reason to interact with—are not particularly rel-

evant to how one experiences a place.

Outside of the fairly limited vital urban places with an active sidewalk life, the pres-

ence of a high residential density is only likely to be apparent to the causal observer in

terms of building height or automobile traffic. And automobile traffic does not register

to people as “density” so much as “congestion”: something that interferes with getting

places, rather than the presence of a large number of destinations.

If the presence of numerous nearby destinations is the main thing besides building

height that registers as density to most people, then one would expect employment density

to be a relatively good proxy for it. Not all destinations involve employees, to be sure—

parks, plazas, and what Jacobs (2011, 89-90) calls “public characters” qualify, though

public characters often are retail workers—but many of them do.
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Figure 3.5: Los Angeles-Long Beach-Anaheim, CA MSA map of land use
and intensity, measured by walkshed-adjusted density. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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This model of how people perceive urban density would be expected to yield a

lower perceived density for Los Angeles, a city which Wachs (1984) notes, had an un-

usually weak downtown core even before the advent of mass automobile ownership. This

core weakness was originally due to height limits downtown, the long distance between

downtown and the port facilities in Long Beach and San Pedro, and an interurban streetcar

system—the Pacific Electric ”red cars” (Hilton and Due, 2000)—that was one of the coun-

try’s most extensive, but it has been magnified greatly by over half a century of freeway-

and-automobile-oriented development (Wachs, 1984).

A simple test of this hypothesis is to consider the metro areas in my job-density

clusters 1, 2, and—to a lesser extent—3 (shown in Table 3.11 on page 154), which contain

the metro areas with the largest fractions of their jobs in high and very-high density neigh-

borhoods. This model seems to do a better job of representing the common understanding

of metro area density than the population density measures discussed above.

As a check on this test, one can also calculate job-weighted job densities in place of

population-weighted population densities. The list of the twenty-five major metro areas

with the highest job-weighted densities given in Table 3.22 on page 188 is, unsurprisingly,

fairly similar to the set of metro areas in clusters 1, 2, and 3.

Notably only the seven metro areas with the highest job-weighted densities—New

York, Chicago, San Francisco, Boston, Seattle, Honolulu, and Washington—have densi-

ties near or above 40,000 jobs per square mile, the approximate value that makes transit

or parking structures necessary. This is consistent with Lang (2000, 2003)’s observation

that, even twenty years ago, a large fraction or even majority of office jobs—the type of
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Table 3.22: Major Metro Areas with Highest Job-Weighted Densities

Rank Metro Area Job-Weighted
Density ( / sq. mi.)

1 New York 124,000
2 Chicago 65,200
3 San Francisco 56,200
4 Boston 41,100
5 Seattle 39,500
6 Honolulu 36,200
7 Washington 35,900
8 Philadelphia 26,300
9 Minneapolis 22,900
10 Los Angeles 22,900
11 San Jose 19,800
12 Pittsburgh 19,600
13 Houston 19,100
14 Orlando 18,800
15 Cleveland 16,900
16 Denver 16,400
17 Las Vegas 16,200
18 Atlanta 15,800
19 New Orleans 15,200
20 Portland 14,700
21 Dallas 14,000
22 Austin 14,000
23 Baltimore 13,900
24 Charlotte 13,400
25 Indianapolis 12,600
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jobs that is most often found at high densities due to agglomeration economies—in most

metro areas were found in low-density “edgeless city” corridors and office parks rather

than traditional downtowns or relatively dense “edge city” developments.

To be clear, the fact that the common perception of urban density does not track

particularly well with population density does not mean that population density is unim-

portant: for many purposes, including the potential ridership for transit and the presence of

a sufficient customer base to support neighborhood retail such as grocery stores, it can be

essential. However, developing a better understanding of the factors that lead to perceived

density than the crude proxy of employment density used here would be a potentially in-

teresting line of research.

3.3.3 Is Density Demographics?

Another potential use case for the neighborhood characterization data collected in

Chapter 2 and the typologies developed in Sections 3.1 and 3.2 is the study of how density

relates to various demographic traits. The fact that the neighborhood characterization

data is tabulated by relatively-consistently-sized hex cells that are roughly the size of a

walkable neighborhood makes it more useful than data tabulated by Census tract or block

group for this purpose. This is because because the use of a consistently-sized tabulation

geography mitigates that modifiable areal unit problem—discussed in Section 2.3.1—and

because the hex cell tabulation geographies can reasonably be expected to represent the

actual experienced environment of residents of a given neighborhood.
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Given the complicated and problematic history of racism in the United States, and

the degree to which racism and racial segregation are fundamental to the history of Amer-

ican urban areas over the past century—discussed in Section 1.2—the different population

densities experienced by residents of different races in American metro areas is a partic-

ularly interesting topic. While the relationship between race and density is a subject large

enough to easily fill a thesis as long as this one, I have calculated the median activity den-

sities at which non-Hispanic white, non-Hispanic Black, Latin, non-Hispanic Asian, and

non-Hispanic other race residents live in the sixty largest US metro areas.

Table 3.23 on page 191 lists the ratios between the median activity density expe-

rienced by residents of each race and the overall median activity density for each of the

ten metro areas where white residents live at the highest and lowest densities compared

to residents overall. The same ratios are given for the each of the ten metro areas where

Black residents live at the highest and lowest densities in Table 3.24 on page 192, and a

full list for the sixty largest metro areas is given in Table K.1 on page 683.

While this is a very preliminary analysis, some recognizable patterns immediately

jump out from these tables. In each of the sixty largest metro areas in the United States,

white residents live at a median activity density lower than the overall median activity

density for all residents and lower than the median activity density for members of any

other race. And in each of these metros, Black residents live at a median activity den-

sity higher than the overall median activity density for all residents; in nine of them—

Rochester, Worcester, Boston, Philadelphia, Providence, Grand Rapids, Bridgeport, and

Hartford—they live at median activity densities more than twice the overall median activ-

ity densities for all residents.
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Table 3.23: Metro Areas With White Residents at Elevated and Reduced Densities

Metro Area

Median
Activity
Density of
Residents
( / sq. mi.)

White
Median

/
Overall
Median

Black
Median

/
Overall
Median

Latin
Median

/
Overall
Median

Asian
Median

/
Overall
Median

Other
Median

/
Overall
Median

Albuquerque 4,900 97% 121% 101% 107% 91%
Salt Lake City 6,300 95% 125% 118% 110% 112%
Portland 5,900 94% 139% 122% 118% 110%
Tampa 4,400 93% 126% 110% 102% 105%
Kansas City 3,200 91% 117% 128% 131% 104%
Seattle 5,500 91% 127% 115% 113% 106%
Denver 6,300 91% 132% 122% 104% 104%
Austin 4,100 91% 114% 110% 112% 102%
Fresno 5,900 91% 128% 104% 101% 97%
Las Vegas 8,000 90% 109% 115% 97% 100%
... ... ... ... ... ... ...
Hartford 2,600 74% 221% 268% 115% 126%
Birmingham 1,700 73% 151% 111% 137% 105%
Memphis 3,100 73% 119% 138% 91% 92%
San Antonio 4,900 73% 104% 114% 106% 91%
Philadelphia 5,400 73% 262% 195% 114% 113%
Providence 4,200 72% 259% 301% 142% 190%
Boston 5,300 68% 311% 324% 202% 144%
Milwaukee 5,200 65% 177% 190% 114% 136%
Bridgeport 4,500 58% 237% 235% 120% 131%
New York 17,700 44% 174% 186% 142% 143%
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Table 3.24: Metro Areas With Black Residents at Elevated and Reduced Densities

Metro Area

Median
Activity
Density of
Residents
( / sq. mi.)

White
Median

/
Overall
Median

Black
Median

/
Overall
Median

Latin
Median

/
Overall
Median

Asian
Median

/
Overall
Median

Other
Median

/
Overall
Median

Rochester 2,600 81% 347% 281% 134% 144%
Worcester 1,900 78% 324% 347% 156% 138%
Boston 5,300 68% 311% 324% 202% 144%
Philadelphia 5,400 73% 262% 195% 114% 113%
Providence 4,200 72% 259% 301% 142% 190%
Grand Rapids 2,500 80% 251% 222% 140% 153%
Bridgeport 4,500 58% 237% 235% 120% 131%
Hartford 2,600 74% 221% 268% 115% 126%
Pittsburgh 2,600 87% 219% 151% 198% 155%
Minneapolis 3,700 87% 194% 156% 143% 129%
... ... ... ... ... ... ...
Los Angeles 13,000 77% 113% 116% 92% 89%
Riverside 5,300 74% 113% 117% 102% 94%
San Jose 10,800 85% 112% 112% 103% 100%
New Orleans 5,800 84% 110% 122% 107% 94%
Las Vegas 8,000 90% 109% 115% 97% 100%
Houston 4,900 80% 107% 118% 106% 96%
Dallas 5,100 83% 107% 119% 111% 102%
Miami 8,200 77% 105% 117% 88% 91%
San Antonio 4,900 73% 104% 114% 106% 91%
Honolulu 9,900 81% 100% 97% 116% 89%
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Latin and Asian residents also usually live at elevated activity densities: Latin res-

idents only live at reduced densities in Honolulu and Raleigh and Asian residents live at

reduced densities in eight of the sixty metro areas: Phoenix, Detroit, Las Vegas, Orlando,

Baltimore, Los Angeles, Memphis, and Miami. In no case do members of either race live

at median activity densities below 88% of the overall metro area median activity density

while white residents do so in forty-five of the sixty metro areas considered.

In addition, the ten metro areas where white residents live at median activity den-

sities closest to the metro area median activity density are all—except for Kansas City—

located in cities in the West, Southwest, or South Florida and have no more than 10%

Black residents. These are, for the most part, metro areas that did not experience partic-

ularly severe white flight or severe core population collapses (Rowlands and Loh, 2021)

during the second half of the 20th Century, as well as being metro areas where, as dis-

cussed in Section 3.3.2, physical, economic, and legal factors prevented the development

of a large band of very-low-density exurbs.

Mirroring this phenomenon, tenmetro areas where white residents live at median ac-

tivities densities the furthest below the metro area median activity density are—except for

San Antonio—all located in former industrial cities in the Northeast, Midwest, or South.

However, the latter metro areas have significantly larger variations in the sizes of their

Black populations: the Memphis metro area is 47% Black and the Birmingham metro

area is 47% Black while the Providence and San Antonio metro areas are 5% and 6%

Black, respectively.
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The tendency of white residents of former industrial cities that experienced sub-

stantial white flight to the suburbs to have white populations living at particularly reduced

activity densities is consistent with the histories of these metro areas and the fact that many

of them lost almost the entire white populations of their dense urban cores to the suburbs

(Rowlands and Loh, 2021). Even in metro areas such as New York and Boston that have

recently experienced a significant influx of white residents to denser neighborhood in their

cores as a result of gentrification over the past two decades, the presence of a large white

population in highly-segregated, low-density suburbia and exurbia is keeping the median

white resident at a much lower activity density than non-white residents.

Likewise, the ten metro areas where Black residents live at median activity densi-

ties the furthest above the median activity density for all residents are all former industrial

cities in the Northeast or Midwest. These metro areas all also—except for Philadelphia,

at 20%—have relatively low Black populations, which presumably means that Black resi-

dents living at highmedian population densities have a relatively small effect on the overall

median population densities of these metro areas.

There is clearly the possibility for much more interesting analysis of data related to

race and density using this data. One obvious opportunity provided by the neighborhood

characterization data tabulated by hex cells is the calculation of segregation indices based

on them. Since the cells are roughly equal in size and roughly the size of walkable neigh-

borhoods, such an analysis would give a useful impression of the relationship between

levels of fine-grained racial segregation and the differences between the activity densities

that residents of different races live at.
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Likewise, a fuller analysis would need to take into account threefold relationship be-

tween race, income, and density, as well as other factors such as differences in the densities

at which workers of different residents work and racial differences in commuting patterns.

While I did not collect the necessary data to investigate racial differences in work-

places and commuting patterns during the neighborhood characterization process in Chap-

ter 2, I did collect information on workplace by income level. This data, from the LODES

dataset, divides all jobs into three income categories: low-income (earning less than $1,250

per month), middle-income (earning $1,251–$3,333 per month), and high-income (earn-

ing more than $3,333 per month). As with the racial data above, I have calculated the

median activity densities at which high-income, middle-income, and low-income jobs are

located the sixty largest US metro areas.

Table 3.25 on page 196 lists the ratios between the median activity densities at which

jobs in each income band are located and the overall median activity densities for each of

the ten metro areas where low-income jobs are located at the highest and lowest densities

compared to jobs overall. The same ratios are given for the each of the ten metro areas

where high-income jobs are located at the highest and lowest densities in Table 3.26 on

page 197, and a full list for the sixty largest metro areas is given in Table K.1 on page 683.

In general, high-income jobs tend to be located at somewhat-higher densities than

low-income jobs. This is likely a consequence of the fact that the highest-income jobs are

mostly in industries that benefit from agglomeration and are commonly found in central

business districts, while low-income jobs are often in the service sector and frequently

found in retail strips across low-density suburbia.
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Table 3.25: Metro Areas With Low-Income Jobs at Elevated and Reduced Densities

Metro Area

Median
Activity
Density of

Jobs
( / sq. mi.)

Low-Income
Median /
Overall
Median

Middle-Income
Median /

Overall Median

High-Income
Median /
Overall
Median

Grand Rapids 6,300 108% 94% 97%
Los Angeles 17,000 105% 92% 105%
Fresno 8,000 103% 98% 99%
Riverside 7,100 103% 100% 99%
San Antonio 8,000 100% 94% 104%
Memphis 5,700 100% 92% 107%
Tulsa 5,400 100% 98% 102%
Oklahoma City 5,400 100% 98% 101%
Milwaukee 7,300 100% 96% 103%
New Orleans 8,900 100% 100% 100%
... ... ... ... ...
Pittsburgh 6,000 88% 92% 113%
Hartford 5,400 86% 87% 116%
San Jose 15,700 85% 85% 113%
San Francisco 19,600 85% 80% 119%
Nashville 6,800 84% 87% 127%
Atlanta 6,900 83% 85% 129%
Seattle 12,500 81% 81% 134%
Boston 12,200 80% 82% 122%
New York 25,900 79% 84% 142%
Washington 15,200 70% 73% 138%

196



Table 3.26: Metro Areas With High-Income Jobs at Elevated and Reduced Densities

Metro Area

Median
Activity
Density of

Jobs
( / sq. mi.)

Low-Income
Median /
Overall
Median

Middle-Income
Median /

Overall Median

High-Income
Median /
Overall
Median

New York 25,900 79% 84% 142%
Washington 15,200 70% 73% 138%
Seattle 12,500 81% 81% 134%
Atlanta 6,900 83% 85% 129%
Nashville 6,800 84% 87% 127%
Boston 12,200 80% 82% 122%
Dallas 9,000 89% 89% 121%
St. Louis 6,500 89% 94% 119%
San Francisco 19,600 85% 80% 119%
Tampa 7,500 90% 93% 119%
... ... ... ... ...
Milwaukee 7,300 100% 96% 103%
Providence 6,300 95% 98% 103%
Albuquerque 7,500 100% 99% 102%
Tulsa 5,400 100% 98% 102%
Salt Lake City 8,800 99% 98% 101%
Oklahoma City 5,400 100% 98% 101%
New Orleans 8,900 100% 100% 100%
Fresno 8,000 103% 98% 99%
Riverside 7,100 103% 100% 99%
Grand Rapids 6,300 108% 94% 97%
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High-income jobs are particularly concentrated at high densities in some of the

cities with themost job concentration—NewYork,Washington, and Seattle in particular—

while they are actually found at lower median activity densities than jobs overall in three

dispersed metro areas with industrial or agricultural economies: Fresno, Riverside, and

Grand Rapids. This pattern is mirrored by low-income jobs, which are found at higher

median activity densities than jobs overall in Grand Rapids, Los Angeles, Fresno, and

Riverside and at much lower median activity densities than jobs overall in Washington,

New York, Boston, and Seattle.

The relatively low densities at which low-income jobs are found and the relatively

high densities at which high-income jobs are found in more sprawling metro areas, such as

Atlanta and Nashville, is more surprising, though in the case of Atlanta it may be related

to the fact that, as Lang (2003, Ch. 6) notes, Atlanta has several of the nation’s largest

edge cities, which—while they are much less dense than traditional CBDs—are still sig-

nificantly dense than the “edgeless city” office parks and office strips where a significant

fraction or even majority of office jobs are found in most American metro areas.

Significant care must be used in interpreting these results, though, because what

counts as a high-income or low-income job in practice varies significantly between metro

areas. In eight high-income and high-cost-of-living metro areas, the majority of jobs fall

into the high-income band of the LODES data: San Jose (64%), San Francisco (57%),

Washington (57%), Seattle (56%), Boston (55%), Bridgeport (54%), Hartford (52%), and

Minneapolis (51%). While the fact that this data is only divided into three income bands

poses a significant limitation, it is still possible that interesting results may be gleaned

from it.
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Chapter 4: Implications for Public Transportation

A major potential use of my neighborhood and metro area typologies—and the use

case that originally motivated them—is the comparison between neighborhoods that are

and are not served by high-quality public transportation in American metro areas. The

properties that my typologies are based around were selected to measure urban vitality and

walkability, traits that are also essential to supporting high transit ridership. This chapter

is an exploration of the potential for further research based on my work on typologizing

American urbanism.

I begin in Section 4.1 with a review of the literature on what makes metropolitan

areas and neighborhoods within them particularly amenable to public transportation. Sec-

tion 4.2 reverses the question with a review of the traits of high-quality public transporta-

tion. Section 4.3 continues with a discussion of the literature on several equity issues in

American public transportation. And, finally, Section 4.4 presents a preliminary analysis

of major American public transportation networks based on my data.
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4.1 What Makes Metropolitan Areas Amenable to Transit?

While the exact mix of urban properties that make a metropolitan area tend toward

high transit ridership and low private automobile use are still under debate, there are sev-

eral traits that seem to clearly make a significant difference: density, clustering of destina-

tions, mixture of land use, and walkable street networks.

4.1.1 Density of Population and Jobs

The idea that high population density is the main requirement for an urban area

to be amenable to transit is both traditional and simple. It fits well with the fact that

American cities generally had decreasing densities over the course of the 20th Century

(Anas et al., 1998, 1436-1438) as cars supplanted public transit outside of a few older

cities, and with the pro-density approach to understanding urban vitality promoted by Jane

Jacobs in Chapter 11 of The Death and Life of Great American Cities. (Jacobs, 2011,

Ch. 11)

Residential population density is frequently regarded by transit planners as one of

the most useful metrics for determining how much transit service it is practical to supply

to an area, since higher density means that more people will live within walking distance

of each transit stop (Walker, 2012, 109-116). However, since this is principally a concern

about the number of people within walking distance—at most a mile—of a given location,

the overall density of the city or metropolitan area is not as relevant as the density of

smaller units such as census tracts.
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Density has consistently been found to drive transit ridership, though the size of the

effect seems to depend on the type of transit. Seskin et al. (1996, Ch. 2)’s meta-analysis

found that ridership of light rail systems had an elasticity of 0.59 with respect to residential

density near stations, but only 0.40 with respect to employment density near stations, while

commuter rail systems had elasticities of 0.25 with respect to residential density but 0.71

with respect to employment density. These values are averages of system-wide figures,

though, and the elasticity of station ridership with density near that station can be greater

than unity. Seskin et al. (1996, Ch. 2) also reported that walking environment around

transit stations is important, but that studies have suggested that few people are willing to

walk half a mile to transit, while most are willing to walk at least 500 feet.

In addition to general suggestions about density required for transit, Seskin et al.

(1996, Ch. 2) cite suggestions, including from a report by the Institute of Transportation

Engineers (1989), for density thresholds for different levels of transit service. However,

these studies are likely overly simplistic and do not take into account the wide non-density

variation in environments.

The importance of density was reaffirmed by Holtzclaw et al. (2002), who studied

Chicago, Los Angeles, and San Francisco, and found that car ownership was a function of

three factors: residential density, per capita income, and the availability of public transit.

Likewise, Ewing et al. (2003), studying a large number of metropolitan areas, found that

density—of population and jobs—had a very large effect in determining transit ridership

and mode-share (the fraction of all commuters who commute by transit).
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Analysis of transit ridership and density in a number of metro areas by Levinson and

Kumar (1997); Newman and Kenworthy (2006) found that transit ridership was strongly

correlated to activity (job plus population) density, with a particular upturn in ridership

at densities of around 9,000 activity units per square mile. However, work by Schwanen

and Mokhtarian (2004) suggests that some of the relationship between density and transit

ridership may be more a consequence of people who prefer to ride transit choosing to

live in denser relationships, rather than density directly driving people to choose transit.

The same study did find (Schwanen and Mokhtarian, 2005), though, that the physical

structure of neighborhoods does influence mode choice to some degree, even controlling

for residents’ preferences.

The relative importance of density versus broader descriptions of urban form is still

in dispute. Ewing et al. (2014) examined the merits of compact cities versus sprawl as a

spatial solution to a number of problems, including automobile dependence. The authors

began with a literature review on the nature of sprawl and disagreed on whether multi-

dimensional sprawl indices or density form a better measure of sprawl. They conclude,

however, that increasing density and the mixing of uses are probably worthwhile.

4.1.2 Clustering of Destinations

While density is clearly important, relative concentration of destinations can be as

well. A city where everyone only travels from their home to a single downtown core is

much simpler to serve by transit than one where residents make many trips in all directions

from their homes. While no real city is perfectly monocentric, and people commute to
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destinations other than work, it seems plausible that having jobs concentrated in a few

dense clusters—a polycentric city—would be easier to serve by transit than one in which

they are broadly dispersed throughout the metropolitan area.

Barnes (2001) found that having a large fraction of a region’s jobs in high-density

areas and the concentration of a relatively large fraction of the metropolitan population in

a relatively small fraction of its land area were the main drivers of transit mode share for

commute trips. Likewise, Schwanen et al. (2001) found that movement of jobs to suburbs

generally reduced transit mode share in Dutch cities.

These results suggest that urban monocentricity—the concentration a metro area’s

jobs and population in a single, dense core—may be optimal, but polycentricity is still far

better than dispersion—in which jobs and population are spread roughly evenly across an

area—for encouraging transit ridership, even at the same overall densities.

This is consistent with the study by Yang et al. (2012) discussing the effect of de-

velopment densities and sprawl on commute travel times, which found that the density of

suburban centers relative to the region and the spatial distribution of high-density nodes

are important to reducing travel times. More recently, Knaap et al. (2016) studied the role

of polycentric development in the Baltimore-Washington area in the Maryland transporta-

tion network and found that this development promoted both economic growth and transit

ridership.
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However, while polycentricity may make a city easier to serve with transit, the type

of transit still matters. Louf and Barthelemy (2014a) modeled city congestion in poly-

centric cities and concluded that congestion can’t be resolved without transit that is not

constrained by traffic: buses running in mixed traffic, the primary form of transit in most

American cities, are not sufficient.

In addition, the significance of employment centralization may depend on the city:

Merlin (2016) studied changes in transit and automobile accessibility of neighborhoods in

four American metro areas between 2000 and 2010 and found that in some cities, changes

in employment centralization made little difference, while in others, both centralization

and decentralization sometimes correlated with transit accessibility. Another study, by

Brown and Neog (2012), found no relationship between the strength of CBDs and transit

ridership in metropolitan areas of greater than 500,000 people after controlling for other

factors.

Residential density and employment density are more complements than substitutes:

people need to be able to travel between home and work easily and, unlike with shopping

or other errand destinations, they cannot generally simply rely on commuting to the closest

employment district. However, by allowing work commutes to be served more easily by

transit, job clustering can encourage a less automobile-dependent lifestyle.

It is important to keep in mind, though, that trips to work are not the only important

type of transit trip, and that American public transportation providers have a history of

neglecting other types of trips, such as travel for shopping and education. Because of the

importance of non-work destinations, calculating the activity density of a neighborhood by
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adding the number of jobs and residents in a neighborhood without considering the shares

of residential and various commercial uses—the mixture of uses called for by Jacobs and

others—is overly simplistic for understanding walkability.

4.1.3 Mixed Land Uses and Walkable Street Networks

In addition to density, mixed land uses and walkable street networks also play an

important role in encouraging public transportation use. A particularly detailed study in

of Washington Metrorail stations in Montgomery County, Maryland by Cervero (2001,

2002) found that land-use diversity had the largest positive impact on transit ridership of

the factors studied, followed by density, and well above measures of the street network’s

amenability to walking. However, Cervero also found that the presence of continuous

sidewalks and the dimensions of streets played amajor role in determiningwhether reached

particular stations on foot or not.

On the other hand, Seskin et al. (1996, Ch. 2) suggested that land use diversity,

while useful, was less important than job and population densities in driving transit rid-

ership. They also suggested that street and sidewalk connectivity are important for transit

ridership, but found the effects hard to quantify.

A meta-analysis by Ewing and Cervero (2010) found that the most important fea-

tures for increasing transit usage, after distance to transit, were the density of streets and

intersections and the percentage of intersections that were four-way rather than three-way.

In addition, Grosvenor and O’Neill (2014) explicitly positioned themselves in opposition
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to Newman and Kenworthy (2006), arguing that a focus on density to the exclusion of

location, accessibility, and other design characteristics may actually be leading to poorly-

located and designed developments that encourage car use.
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4.2 What is good transit service?

No matter how well-suited a metropolitan area may be for public transportation,

its transit ridership also depends on the existence and quality of the public transportation

that is actually provided. While there is no simple definition of what constitutes good or

sufficient public transportation, a review of recent transit planning literature suggests three

particular traits as important: long hours of operation, high frequencies, and rapid speeds

with good reliability of travel time.

4.2.1 Hours of Operation

At the risk of stating the obvious, transit service is only useful when it is available.

While some American transit systems—most famously, the New York City Subway, but

more often bus networks—do operate twenty-four hours a day, it is muchmore common for

service to be limited to times when higher ridership is anticipated. At a minimum, service

during commuting peaks for “nine-to-five” office workers is nearly always provided, while

mid-day, evening, and weekend services are less often available.

However, while peak-only transit service may help get commuters off of roads at

the most-congested times of day, it cannot provide a complete alternative to driving and

car ownership. Furthermore, even if we limit our consideration to work trips, non-peak

service is particularly important for the economically disadvantaged.

Legrain et al. (2015) observed that transit availability outside of peak periods is

essential, and often not considered in studies measuring transit ridership. In particular,

they found that low-wage workers have very different transit needs from their higher-wage
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counterparts, and are more likely to need non-peak transit service and service to locations

other than the downtown core, results that are echoed by Lubitow, Rainer, and Bassett

(2017).

In addition to work journeys, transit is essential for errands, shopping, and care-

related journeys: journeys that are more likely to happen during evenings and weekends, or

at mid-day on weekdays. Furthermore, these sorts of journeys are particularly commonly

performed bywomen (Galicia, Higueros, andKhanna, 2019; Lubitow, Rainer, and Bassett,

2017; Plyushteva and Schwanen, 2018). Although some transit agencies have recently

suggested that “ride-sharing” companies such as Uber and Lyft can substitute for transit

during these lower-ridership periods, Jin et al. (2019) found that they were not effective

substitutes for low-income and minority riders, and that their presence actually worsens

transportation inequity.

Leaving aside equity concerns, a number of authors have noted that providing non-

peak service results in significant ridership increases. Evans (2004) found that increasing

on hours of operation generally has a significant effect on ridership. In particular, they

noted that adding later evening service can increase ridership at other times of days by

offering riders a guarantee that they will not be stranded.

A more-detailed study carried out in Australia by Currie and Loader (2009) found

very large ridership increases from adding additional service: the addition of weekend

hours showed elasticities of more than 0.8 and the addition of evening service led both to

large ridership increases in evening hours and to equal increases in daytime ridership. They

also found that weekends in particular need late-evening service, with significant fractions
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(6-7%) of outbound trips before 5pm resulting in return trips after 11pm and concluded

that service absolutely needs to last until at least 8pm, though there is significant value to

continuing it at least until midnight.

Although adding hours of service does of course cost money, it can sometimes re-

duce the cost per rider, even if the added hours have lower ridership. This is because, as

noted by Walker (2012, 80-83), peak-only service sharply increases costs, since the size

of the fleet scales with peak service and since because peak service requires operators to

work split shifts, which generally require higher pay. Increasing non-peak service requires

more operator hours, but will generally not require more vehicles or other capital expenses.

Providing overnight service on at least the most important routes is a good goal for

transit networks in major metropolitan areas. However, this can lead to some complica-

tions: while studying the unhoused in Santa Clara County, California, Nichols and Cazares

(2011) found that in areas where 24-hour transit is available, many houseless people reg-

ularly use buses as overnight shelters. This was often an active choice despite knowing

about other options, and women in particular often said they rode the bus overnight for

safety. Awkwardly, other passengers—especially women—have reported (Galicia et al.,

2019) that the use of buses as de-facto shelters for the unhoused makes them feel less safe

using them, especially at night.

209



4.2.2 Frequency

The need to wait for a transit vehicle is one cost of using public transit that does

not have a clear mirror in either automobile or active (walking and cycling) transport.

Besides the direct addition waiting time makes to travel time, it is a particular concern

because passengers tend to weigh it particularly heavily in making mode-choice decisions,

overestimating wait time (especially if it is unpredictable), while accurately estimating in-

vehicle travel time (Fan et al., 2016a,b).

Besides its effects on ridership, Lubitow, Rainer, and Bassett (2017) and Galicia

et al. (2019) have noted that low frequency can be a particular issue for female transit

users, both because women are more likely to “trip-chain,” riding to several destinations

before returning home, and because low frequency at night can mean long waits at dark

and isolated bus stops. Fan et al. (2016b) found that women in particular do overestimate

wait times by especially large amounts at night and in perceived unsafe locations.

A number of studies Dziekan and Kottenhoff (2007); Gooze et al. (2013); Watkins

et al. (2011) have shown that the presence of real-time arrival time information at transit

stations can significantly reduce passengers’ perceived wait times. However, it is essen-

tial that this information be reliable—a particular difficulty for buses running in mixed

traffic—as inaccurate real-time arrival time information significantly increases perceived

waiting time above no arrival time information.
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The costs of wait time can be multiplied by the need for transfers, since passengers

have to wait for a vehicle at each transfer location. Jansen et al. (2002) and (Walker, 2012)

note that transfers are generally unpopular with riders because they cost time (both wait

time and often travel time caused by having to go out of one’s way), but they are essential

for designing functional transit networks.

As a result, it is important to design systems to reduce the costs of transfers for

riders. This can include optimizing stations and schedules to ease transfers and should

involve fare structures that do not penalize them. However, higher frequencies are also

an important part of this, since they ensure that even if a connection is missed, another

vehicle will be coming soon.

Although techniques such as improving station amenities by adding seats, shelters,

lights, and real-time arrival time estimates can make transit riders more willing to endure

waits (Fan et al., 2016b), the onlyway to actually reducewait time is to provide servicewith

shorter headways (waits between vehicles) and higher frequency. As detailed by Grosfeld-

Nir and Bookbinder (1995) headways have historically been set to reduce congestion, with

a goal of ensuring that transit vehicles are never so overcrowded that passengers are left

behind at stations.

Because operation costs tend to be directly related to frequency, especially for bus

service, there has been a tendency to assume that the optimal frequency for transit is the

lowest frequency that does not lead to severe overcrowding. However, a number of stud-

ies have found that ridership elasticity for frequency is quite high, particularly on low-

frequency routes where wait times are long.
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Forty years ago, Lago et al. (1981a,b) reviewed the literature on calculations of fre-

quency elasticities on bus routes and found values as high as 0.7 on low-frequency routes.

More recently, Evans (2004) found elasticities between 0.3 for urban transit and 1.03 for

regional rail with lower frequencies and Brown and Neog (2012) reported an elasticity of

between 0.76 and 0.91 between commuter mode share and average system-wide frequency

for transit in US metropolitan areas of at least 500,000 people.

While an avoiding-overcrowding approachwould focus primarily on supplying higher

frequencies during weekday rush hour, when crowding is most often an issue, Paulley et al.

(2006) reported that studies in Europe have found higher frequency elasticities on week-

ends, when frequency is lower. A study of ridership onMinneapolis-St. Paul’s MetroTran-

sit by Totten and Levinson (2016) found an elasticity of 0.39 between rush hour ridership

and frequency and mid-day ridership and frequency on weekdays, but with little or no

connection between the two. The authors also reported that ridership on weekends was

more interconnected, with increased frequency on either Saturday or Sunday increasing

ridership on both days.

Although frequency elasticity studies confirm that increasing frequency, especially

on low-frequency routes, will have a significant effect on increasing ridership, they do

not provide a clear answer to the question of how frequent a transit line needs to be to

reasonably qualify as “good.” Two recent studies of urban rail transit in Europe may give

a hint of this, though. Both Luethi et al. (2007) in Zurich and Ingvardson et al. (2018)

on the Copenhagen Metro analyzed how much before the next train passengers arrived at

stations.
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Luethi et al. (2007) found that, for lines with headways as short as 5 minutes, half

of passengers still arrived based on the schedule, rather than than at random, while Ing-

vardson et al. (2018) estimated this threshold as occurring at a headway of 10 minutes. In

either case, this suggests that rather short headways are needed to encourage passengers to

discount concern about wait time completely. However, it should be noted that both stud-

ies found that the fraction of riders who did not take the schedule into account increased

on weekends, suggesting that spontaneous travel, as opposed to regularly scheduled com-

mutes, have somewhat higher thresholds.

Furthermore, both studies were performed on European rapid transit systems with

very high on-time reliability. On systems, such as urban buses running in mixed traffic,

with lower schedule reliability, passengers may be less inclined to make travel decisions

based on scheduled arrival times.

Surveys of American bus riders (Higashide and Accuardi, 2016; Higashide and

Buchanan, 2019) corroborate the idea that headways of roughly 10 minutes are signifi-

cantly more appealing to riders than longer headways: after a halving of ride length, the

most popular transit improvement for bus service was a reducting in headway from 20

minutes to 10 minutes. Although 15 minute headways are the most common definition of

“frequent service” for American transit networks (Spieler, 2018, 26-27), Higashide (2019,

23-27) argues that this is insufficient, and should be treated as a floor for frequency.

High frequencies that make transit always available without consulting a schedule

may be particularly important to help local transit avoid losing ridership to ride-hailing

services, which have recently served as a replacement for transit for an increasing number

of riders, especially on social/leisure trips where short wait time is particularly valued
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because riders are less likely to be following a regular, fixed schedule. It is also notable that

ride-sharing is particularly heavily used during evening hours when many transit systems

operate at lower frequencies, making the wait time difference more pronounced (Clewlow

and Mishra, 2017; Gehrke et al., 2018, 2019; Rayle et al., 2016).

The loss of transit ridership to ride-hailing services reduces fare-box revenue and

makes it more difficult for transit agencies to maintain high frequencies for the benefit of

those riders who cannot afford to use ride-hailing services. Furthermore, these services

are leading to a substantial increase in vehicle miles traveled with negative consequences

for both congestion and climate change (Erhardt et al., 2019; Wu and MacKenzie, 2021).

4.2.3 Speed and Reliability of Travel

While increasing the frequency of public transportation service reduces the time

passengers have to wait for a transit vehicle, it is not the full story: to make public trans-

portation competitive with driving for most passengers, the transit vehicles themselves

need to travel quickly. Ideally, they would be able to travel significantly faster than auto-

mobile traffic, since the need to wait for a transit vehicle and to walk from one’s origin and

then to one’s final destination are time costs that drivers do not need to deal with.

While very high speeds for transit vehicles are possible in some cases, particularly

regional rail trains with long stops between stations, the need to have frequent stops con-

strains the maximum speed of most urban transit. On the other hand, large metropolitan
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areas tend to have significant road congestion, especially during peak travel times, so tran-

sit modes, such as rapid transit, that do not share road space with automobiles can have a

significant speed advantage (Vuchic, 1999, Ch. 2).

An additional advantage of transit modes that are completely grade-separated from

automobiles, or at least have their own travel lanes, is greater reliability, since travel time

is not dependent on unpredictable road congestion. This can, itself, be quite important,

as noted by Bowman and Turnquist (1981), who found that schedule reliability was more

important for passengers than frequency on services with longer headways. Once-every-

half-hour service is much less inconvenient on a regional train that consistently keeps its

schedule than on a bus with travel times that depend on how much traffic it gets stuck in.

As for the question of how fast transit needs to be, that depends on a city’s level

of traffic congestion, the sorts of trips that it is used for, and the distances riders need to

travel to make these trips. For commuting trips, Schwanen and Dijst (2002) found that

Dutch commuters averaged half an hour each for travel to and from work, consistent with

Marchetti (1994)’s work on daily travel times across cultures. The acceptable time for

other sorts of trips depends, among other things, on how frequently they are made: people

will readily make more time available for a trip if it happens monthly or yearly than if it is

a daily or weekly necessity.

Since travel time often seems fixed by infrastructure or by factors, such as traffic,

outside a transit agency’s control, there have not been many studies on the elasticity of

ridership with respect to travel time for public transit. However, literature reviews by Lago

et al. (1981a,b) found speed elasticities as high as 0.85 for bus service, with lower values

for (generally more reliable and faster) rapid transit service.
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However, while building new grade-separated rapid-transit or light rail with its own

right-of-way is very expensive and generally only an option for the highest-potential routes,

the construction of bus lanes and the use of transponders to give buses priority at intersec-

tions provide cheap options to increase the speed and reliability of bus service by making

it no longer constrained to the speed of general automobile traffic. Speeding boarding by

having off-board fare collection and proof-of-payment fare enforcement rather than mak-

ing each passenger pay the driver as they board can also help with this (Danaher et al.,

2007; Spieler, 2018).

Improving the speed and reliability of bus service has the additional benefit that,

unlike running more buses to increase frequency or period of service, it can actually lower

operational costs, since fewer vehicles are needed to maintain the same level of service

if they can complete a route more quickly. The need to improve bus service in this way

by building many more bus lanes and speeding boarding has been the focus of a major

push in transit planning recently, and is discussed in detail by Walker (2012, 97-107) and

Higashide (2019, 39-58).
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4.3 What is Needed for Transit Service to be Equitable?

While high frequency, long hours of service, and rapid speed of travel are all impor-

tant considerations in determining whether transit service is “good,” they are not always

sufficient to ensure equitable service for all members of the community. For this reason,

it is important to consider what features a public transportation network needs to have to

ensure that it effectively serves more-vulnerable members of the community.

4.3.1 Access for the Disabled

Public transit access is particularly important for people with disabilities, both be-

cause many disabilities make it more difficult or impossible to drive, and because being

disabled tends to correlate with a lower income and higher expenses (Imrie and Wells,

1993) that make it more difficult to own a car. Unfortunately, though, many transit sys-

tems have features that make them inaccessible to disabled populations, including a lack

of step-free access to vehicles and insufficient space for both mobility devices and strollers

in vehicles (Lubitow, Rainer, and Bassett, 2017).

Transit agencies in the United States have made significant improvements in acces-

sibility for people with mobility impairments in recent years, including the replacement of

high-floor buses with low-floor buses with ramps that make it possible to use wheelchairs

without a special lift. Many of these improvements have been beneficial to abled passen-

gers as well: for example, low-floor buses lower general passenger boarding and alighting

time by about 15%, thus reducing bus dwell time at stops and speeding up overall ser-

vice (Levine and Torng, 1994). On the other hand, other potential improvements, such
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as reducing the distance between bus stops to give disabled people shorter walks to des-

tinations, reduce service quality for other passengers, in this case by slowing down bus

service.

For rail systems, however, replacing rolling stock is not enough: stations often need

to be renovated to add elevators and ensure level boarding from platform to train. Unfor-

tunately, these renovations are expensive and larger systems such as New York often do

not perform complete retrofits. Ferrari et al. (2014) found that even the fairly ambitious

retrofit of the London Underground performed by Transit for London from 2006 to 2014

left riders who could not climb stairs with trips that were often twice as long as available

to other users.

It is also important to keep in mind that mobility impairments are not the only dis-

abilities that can limit a person’s ability to use transit, and that can be accommodated by

improvements to vehicle and transit facility design (Levine, 1997). For example, Jones and

Jain (2006) discussed a variety of barriers that make it more difficult for visually impaired

passengers to use rail stations in the United Kingdom.

In the United States, the Americans with Disabilities Act of 1990 requires accessi-

bility for people with certain impairments in all new and renovated transit facilities, and

also requires the provision of paratransit service (point to point shuttle service provided on

demand with small vans) for all individuals who are unable to use regular transit service

because of their disabilities. The high cost of providing paratransit service provides one

motivation for transit agencies to make their regular transit service as accessible to people

with disabilities as possible (Levine, 1997).
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Despite the high costs of provision noted by Fei and Chen (2015), Nguyen-Hoang

and Yeung (2010) found that paratransit service is essential, as it is often the only means

of transportation available to a significant fraction of the population. Still, as noted by

Levine (1997), making regular transit accessible to more riders is beneficial both because

it reduces the costs of providing paratransit in the long term and because paratransit’s

requirements for trips to be scheduled in advance impose a significant downside for para-

transit users.

4.3.2 Affordability

People with low incomes are another group that benefit disproportionately from

public transit, since automobile-based transportation is often too expensive for them to

access. However, high fares can pose a significant barrier to their use of transit. Further-

more, low-income commuters often make different types of trips—in terms of times of

day and destinations—than higher-income commuters, and so transit service optimized to

the needs of the latter may not effectively serve the former. Unfortunately, government

efforts to alleviate these problems have been sporadic and inconsistent (Sanchez, 2008).

Since no transit system in the US serves the entirety of its metropolitan area with

high-quality service, part of the price of riding transit is the price of living and working in

neighborhoods that are well-served by transit. For a transit system to be truly affordable, it

is essential that it provide good service to low-income residential areas, and to low-income

jobs.
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Ironically, improvements to transit can feed gentrification, producing a situation

where attempts to improve transit for low-income riders actually prices them out of ar-

eas with good transit. Besides the obvious economic harm this causes, it is also socially

harmful (Sandoval, 2018) and may actually increase carbon release as richer people with

more energy-intensive lifestyles move into dense areas (Rice et al., 2020). This does not

mean that providing transit to low-income areas is unimportant, but it does mean that ef-

forts need to be made to ensure that these areas remain affordable.

In addition to serving low-income areas, transit systems need to adopt fare poli-

cies that do not make transit inaccessible for substantial portions of the population. This

means funding transit sufficiently that basic fares can remain low, and it also means avoid-

ing charging excessively high fares for certain services—as is common with American

commuter rail services—that essentially turn them into a parallel transit system for the

well-off.

Many transit systems provide discounted fares for certain groups perceived to be

low-income—students, disabled people, and the elderly, in particular—but, as pointed

out by Lipscombe (2016, 44-48), these mechanisms do not always effectively target low-

income riders. An alternative would be reduced fares for low-income people, but this

would potentially require a significantly larger bureaucracy for verification.

One method that many transit systems use to reduce costs for regular riders is to sell

weekly or monthly unlimited ride passes at a cost lower than many riders would pay if

they made all their trips at full fare. However, Lubitow, Rainer, and Bassett (2017) and
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others have noted that these passes disadvantage the lowest-income riders, who are often

unable to save up enough cash to pay for these passes in advance, and so have to purchase

single-trip tickets, even though the overall cost is higher.

One alternative, described by Streeting and Charles (2006) and Lipscombe (2016,

43-44), is the “fare-capping” system introduced for public transit in London in 2005.

Rather than purchasing a pass in advance, riders use a farecard that caps the total fare

paid for trips in a one-day, one-week, or one-month period at a maximum level, no matter

how many trips are made. Another technique, described by Chalabianlou et al. (2015), is

to cap payment at a certain number of trips, regardless of the total fare paid.

Such a system avoids the need for a lump-sum payment in advance, and also elim-

inates the requirement that passengers predict in advance how much they will use transit

in the future, a prediction that is especially difficult for those with more precarious and

unpredictable income and work schedules. Furthermore, since women are more likely to

own transit passes than men (Vance and Peistrup, 2012), making transit passes more easily

affordable in this manner could be of particular value to low-income women. However, a

combination of inertia and the fact that it requires a significantly more complex ticketing

system has slowed its spread.

A final, and concerning, issue is the response of some public transit systems to the

rise of “ride-sharing” services like Uber and Lyft. There have been arguments made that

these services improve transportation equity and can be used to justify eliminating low-

ridership services. However, Jin et al. (2019) found that, in New York City, Uber provides

no significant equity benefit and the distribution of Uber services is highly unequal.
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4.3.3 Fare Enforcement and Racial Injustice

One obvious racial justice concern for US transit agencies, given the high level of

segregation in American cities, is the degree to which they do or do not effectively serve

minority neighborhoods. Disinvestment in transit over the course of the 20th Century often

left cities with transit that primarily served low-income communities with low rates of

car ownership, while avoiding higher-income neighborhoods where transit was seen as

bringing in undesirable elements.

However, recent attempts to improve transit networks, such as the construction of

the Los Angeles Metrorail system, have raised objections that new improvements are pri-

marily targeted at richer, white areas while leading to disinvestment in existing service to

minority neighborhoods (Mann, 1997). In their survey of transit-dependent riders in Port-

land, Oregon, Lubitow, Rainer, and Bassett (2017) observed similar concerns: a number

of the riders interviewed reported that bus stops have more amenities on routes that white

commuters tend to use than ones black commuters tend to use, and that transit often fails to

serve minority and low-income residential areas and employment sites at the hours needed

to allow commutes to work.

Lubitow, Rainer, and Bassett (2017) also recorded significant concerns about racial

profiling by transit employees, and particularly transit police, as well as difficulties caused

by the transit agency (TriMet) not providing important information in minority languages

and not having employees able to communicate in these languages.
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A particular issue is raised by proof-of-payment fare collection, where passengers

do not have their tickets checked at the start of a journey, but are instead subject to random

fare inspections while on-board vehicles or in a “proof-of-payment” zone at stations. This

approach is increasingly popular with transit agencies because it dispenses with the need

for expensive fare gates and allows for faster boarding and shorter dwell times than having

drivers check all fares on entry (Cummins et al., 2012; Currie and Reynolds, 2016). Fur-

thermore, switching from payment-at-entry to all-door boarding with proof-of-payment

does not seem to increase fare evasion on bus networks (Lee and Papas, 2015).

While proof-of-payment systems have practical benefits, it is important to recognize

that their requirement for random fare inspections does pose a risk of racial profiling and

of creating a hostile environment for people of color, who often feel less safe with law

enforcement and civilian security agents (Camacho, 2017; Lubitow, Rainer, and Bassett,

2017; Renauer, 2018).

In recent years, some transit agencies have recognized that having an overly-punitive

approach to fare evasion can lead to both employee stress and passenger fear, and have

looked to having a broader understanding of why passengers evade fares (Delbosc and

Currie, 2019). On the other hand, there has been a recent spurt of American transit agen-

cies focusing on fare evasion as a major concern and cracking down on it just as Black

Lives Matter protests have brought concerns about police brutality and bias into the pub-

lic eye.
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In addition to these issues, and complicating them, Liévanos et al. (2019) noted that

public input surveys from US transit systems often get disproportionately low response

rates from people of color, leading to a situation in which transit agencies may be unaware

of the degree to which they are failing these riders.

4.3.4 Safety for Women and the LGBT Community

Riding public transit potentially raises one’s exposure to harassment or violence for

the simple reason that it increases one’s contact with other people compared to traveling

by private automobile. This can pose a particular concern to women and members of

the LGBT community because these groups tend to be at particular risks of violence and

harassment in public places.

The majority of women, but not men, reported that safety was a top concern for

them in deciding whether to ride transit in Los Angeles, and only 20% of women reported

feeling safe riding the system after dark. However, women and men who do not ride transit

generally perceive it as less safe than those who do ride it (Galicia et al., 2019).

Some of the safety issues often noted by women can be fixed with improved infras-

tructure: both Galicia et al. (2019) and Lubitow, Rainer, and Bassett (2017) noted that

lack of lighting and shelter at bus stops led to safety concerns for riders, and particularly

women, at night. Likewise, long wait times reduced the perception of safety, providing an

additional argument for higher frequency, especially in the evenings. Furthermore, the fact

that many bus routes do not run late at night often forces riders to walk longer distances

to bus stops at exactly those times of day when it is least safe for them to do so.
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Low frequencies can be a safety problem during the day as well. Besides potential

issues of safety waiting for the bus, routes run with insufficient frequency during the day

can be overcrowded and, as noted by Lubitow, Rainer, and Bassett (2017), crowding on

buses and trains can increase the risk of theft, harassment, and sexual assault.

Participants in Galicia et al.’s study of transit riders in Los Angeles expressed con-

cern that transit system employees do not intervene when they observe harassment, and

also observed that the lack of resources for those experiencing houselessness and mental

illness can lead to transit serving as shelters-of-last-resort and being the sites of unpre-

dictable and unsafe behavior. Increased police presence on transit was also suggested by

many riders, and particularly female riders, two-thirds of whom felt that too few police

officers are present on transit vehicles and in stations.

The same safety issues that are present for women on transit are often serious con-

cerns for lesbian, gay, bisexual, and particularly transgender transit riders. Lubitow, Carathers,

Kelly, and Abelson (2017) interviewed transgender people who ride transit in Portland,

Oregon and found that trans people—particularly trans people of color—experience, and

so anticipate, higher rates of harassment, discrimination, and violence on public transit.

The authors recommended that transit agencies needed to provide more training to

employees about sensitivity towards the transgender community, and about the importance

of responding to harassment and not treating trans people as presumed sources of “disrup-

tion.” On the other hand, the trans people, and particularly trans women of color, they

interviewed were strongly opposed to increased police presence as a way to potentially
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improve safety. Additionally, both Lubitow, Carathers, Kelly, and Abelson (2017) and

Benner (2016) recommended that gender identity and expression be explicitly included in

transit agency non-discrimination policies.
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4.4 Preliminary Public Transportation Analysis

Properly studying the differences between public transportation ridership and ser-

vice in US metropolitan areas, and the sorts of neighborhoods that do and do not require

high-quality service would be a research project at least as ambitious as this one. How-

ever, I have performed a preliminary analysis of the relationship between the results of my

metro area and neighborhood typologies and the largest American public transportation

systems.

In Section 4.4.1, I discuss the difficulty of measuring transit ridership at a metropoli-

tan and neighborhood level and identify thirty-eight metropolitan areas with at least 4%

of their workforce commuting by public transportation. I find that these metro areas fall

into four main categories: college towns, very small tourist towns, commuter suburbs, and

major metropolitan areas.

Next, in Section 4.4.2, I analyze and discuss one of the categories—the sixteenmajor

metropolitan areas with relatively high transit ridership—with a focus on the relationship

between transit ridership and job concentration. I continue this line of inquiry in Sec-

tion 4.4.3 with a discussion of the relationship between transit ridership and residential

concentration.

In Section 4.4.4, I explore public transportation in several of these high-ridership

metro areas in more detail by comparing maps of their rail transit service to the maps

of high-density neighborhoods that I developed and used for my metro area clustering

analysis in Section 3.2. Finally, in Section 4.4.5, I briefly investigate the median densities

at which carfree households and workers who use of transit to commute to work live.
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Maps associated with the discussion in Section 4.4.4 can be found in Appendix L

while additional tables associated with the analysis in Section 4.4.5 can be found in Ap-

pendix K

4.4.1 Types of Metro Area with High Transit Ridership

In most of the United States, a car and a driver’s license are de facto requirements for

full participation in society. Public transportation, when available, operates infrequently,

during limited hours of service, and along relatively indirect, winding routes. There are

three main exceptions to this rule: college towns where campus shuttles or public buses

provide service to a large population of students without cars, a few small towns in rural

areas with mostly tourism-focused economies, and a handful of major metropolitan areas,

most of which are located on the coasts.

The simplest and most common approach to identifying such metro areas and com-

paring their transit usage—as well as for identifying the neighborhoods whose residents

make the most use of transit—is to use American Community Survey (ACS) data on the

fraction of the workforce that uses public transportation to commute to work. This ap-

proach has two major shortcomings, however. First, it does not clearly distinguish com-

muters who drive to a park-and-ride station before taking a commuter train or bus to work

from those whose entire commute is conducted by public transportation.

Second, and more seriously, it privileges commutes to work—the commute type that

US transit agencies tend to serve the best—while neglecting travel for other purposes that

plays an essential role in a carfree lifestyle. This can also pose a gender equity problem
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since, as Lubitow, Rainer, and Bassett (2017) and Galicia et al. (2019) both note, women

are particularly likely to be responsible for shopping, errands, and other care trips that are

excluded by measuring transit ridership solely in terms of commutes.

For a more-complete study of transit ridership patterns in American metro area and

neighborhood types, it would be useful to construct more complete measures of transit

ridership based on transit agency system-wide and route or station-specific ridership data.

This would, however, be a necessarily piecemeal approach, with data collected and pro-

cessed separately for each metro area under consideration. For the purposes of this pre-

liminary survey, ACS commute share data will have to suffice.

According to 2018 American Community Survey data, thirty-eight metropolitan ar-

eas have at least 4% of their workforce commute by public transportation on a regular

basis. Of these, ten are medium or small metro areas dominated by a college or, in the

case of Rochester, MN, by the Mayo Clinic; the largest such metro area is Ann Arbor, MI

with 366,000 residents. Besides being special cases due to a single dominant employer,

these metro areas are difficult to study based on my LODES-based jobs data, since many

state university jobs seem to be missing from or misclassified in the LODES datasets.

Another seven of the metropolitan areas with relatively high transit commuter shares

are small metro areas that appear to have economies largely driven by tourism: none have

over 80,000 residents and four have 40,000 or fewer. While it is why this sort of metro area

would be prone to high transit usage, their small populations may make statistical data less

reliable.
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Table 4.1: Minor Metro Areas with ≥4% Transit Commute Share

Metro Area Population % Transit
Commuters Type

Bridgeport, CT 944,000 10.0% Commuter

Bremerton, WA 262,000 8.9% Commuter

Trenton, NJ 369,000 7.6% Commuter

Atlantic City, NJ 269,000 6.2% Commuter

East Stroudsburg, PA 168,000 4.3% Commuter

New Haven, CT 859,000 4.1% Commuter

Elko, NV 54,000 13.8% College

Ames, IA 97,000 6.5% College

Ithaca, NY 103,000 6.5% College

Champaign-Urbana, IL 239,000 5.6% College

State College, PA 161,000 5.4% College

Ann Arbor, MI 366,000 5.2% College

Iowa City, IA 169,000 4.9% College

Boulder, CO 321,000 4.7% College

Pullman, WA 49,000 4.7% College

Rochester, MN 216,000 4.3% College

Winnemucca, NV 17,000 12.4% Tourism

Clewiston, FL 40,000 7.6% Tourism

Glenwood Springs, CO 76,000 6.9% Tourism

Edwards, CO 54,000 5.1% Tourism

Juneau, AK 32,000 5.0% Tourism

Breckenridge, CO 30,000 4.9% Tourism
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Finally, five of the high-transit metro areas are commuter rail or ferry suburbs of

New York, Philadelphia, and Seattle, and have transit ridership that is significantly driven

by commutes to these adjacent metro areas1. Since their transit commutes largely con-

sist of travel to another metro area, these metro areas’ transit commute shares cannot be

explained in terms of their job and population density characteristics alone. The college-

town, tourist-town, and commuter-suburb metro areas with transit ridership above 4% are

shown in Table 4.1 on page 230.

After these metro areas are removed from consideration, there remain sixteen ma-

jor metro areas—shown in Table 4.2 on page 232—with transit commute shares over 4%

that are not largely the result of single large employers or employment in nearby metro

areas. However, there is significant variation in the transit commute shares of these metro

areas. At the high end, New York has nearly twice as large a faction of workers com-

muting to work by public transportation (31%) as the second-place metro area, San Fran-

cisco (17%). The next threemetro areas—Washington, Boston, and Chicago—have transit

commute shares between 12% and 14%, roughly three quarters of the commuter share in

San Francisco. These five metro areas, along with the following three—Seattle (9.8%),

Philadelphia (9.5%), andHonolulu (8.4%)—make up the set of eight metro areas that Levy

(2019) has described as having significant public transportation; the next highest transit

commute shares, 6.5% in Portland and 6.3% in Baltimore, are only three-quarters of the

transit commuter share in Honolulu.
1East Stroudsburg, Pennsylvania is something of a special case, as it does not have a direct transit link to

New York. Historically, the metro area—which is located in the Poconos—had a tourism-driven economy.
However, the population increased by 70% from 1990 to 2010 and many of the new residents commute
to New York via New Jersey Transit commuter rail lines that reach most of the way to the Delaware River.
Roughly 5% of workers living in the East Stroudsburg MSAwork in New York City—more than the fraction
of workers living in East Stroudsburg who commute by transit.
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Table 4.2: Major Metro Areas with ≥4% Transit Commute Share

Metro Area % Transit
Commuters

CBD
Jobs

High
Density
Jobs

CBD and
High

Density
Population

Medium
Density

Population

New York 31.0% 24.4% 5.0% 35.9% 14.3%

San Francisco 17.1% 13.9% 10.3% 9.8% 20.4%

Washington 13.6% 8.2% 17.6% 4.6% 8.2%

Boston 13.3% 7.8% 12.4% 7.8% 16.3%

Chicago 12.1% 12.5% 5.3% 6.0% 15.9%

Seattle 9.8% 7.2% 11.0% 2.7% 5.2%

Philadelphia 9.5% 4.7% 8.6% 5.1% 15.8%

Honolulu 8.4% 8.2% 13.9% 11.5% 10.6%

Portland 6.5% 0.0% 10.8% 1.1% 2.8%

Baltimore 6.3% 2.0% 10.4% 1.6% 7.6%

Pittsburgh 5.6% 4.2% 9.8% 1.1% 2.4%

Los Angeles 5.1% 3.0% 11.7% 5.6% 25.8%

Minneapolis 4.7% 3.3% 10.0% 1.1% 4.0%

Madison 4.4% 0.0% 2.9% 3.5% 2.5%

San Jose 4.2% 2.5% 12.4% 0.8% 12.6%

Denver 4.2% 1.8% 12.1% 1.1% 3.9%
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4.4.2 Transit Commute Share and Job Density

At a first glance, it is impressive howwell the list of metro areas in Table 4.2 matches

with my job-distribution clusters from Section 3.2.1. Transit ridership is the highest by far

in the one cluster 1 metro area, New York, which also has nearly twice the CBD-density

job concentration of any other metro area. The next five highest transit commute shares

are in my five cluster 2b and cluster 2c metro areas—San Francisco, Chicago, Boston,

Washington, and Seattle—with the one cluster 2a metro area—Honolulu—taking seventh

place.

The remaining nine metro areas, with transit commuter shares between 6.5% (Port-

land, Oregon) and 4.2% (Denver), are made up of my seven cluster 3a, 3b, and 3c metro

areas, plus Portland andMadison, Wisconsin. The only metro areas from clusters 1, 2, and

3 that do not make the list in Table 4.2 are the three cluster 3d metros—Austin, Houston,

and Charlotte—which have lower total CBD and high-density job shares than any of the

metro areas on the list. They are also the only metro areas with more than 1.8% of metro

area jobs at CBD densities on the list.

Furthermore, among the sixteenmajor metro areas with greater than 4% transit com-

muter share and the six additional major metro areas with at least some jobs at CBD den-

sities, plotting the percentage of workers who commute by public transit as a function of

the percentage of jobs at CBD densities gives a linear fit with an elasticity of 1.12 and

R2 = 0.885, as seen in Figure 4.1 on page 235. This suggests that in cities with strong
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central business districts, every new job added to the central business district will add a

new transit commuter: a result that makes sense given that these metro areas tend to have

very congested CBDs with no room for additional parking or for more traffic at rush hour.

This is consistent with Levy’s (2018) observation about the dependence of transit

ridership in American cities on CBD strength, but contradicts the claim by Brown and

Neog (2012) that there is no relationship between CBD strength and transit ridership. A

likely explanation for this inconsistency is that Brown and Neog (2012) included all metro

areas of at least 500,000 residents in their analysis and also separately considered small

and medium, but not large, metro areas. Their explanation is that doing so was necessary

to get large enough samples to be statistically valid. However, this means that the vast

majority of the metro areas in their samples had very little job density and minimal transit

ridership: the opposite of the conditions I am considering.

Furthermore, the definition of “CBD” used by Brown and Neog (2012)—the prob-

lematic 1982Census Bureau definition discussed in Section 1.3.2—also seems to be deeply

at odds with mine, as they report that New Orleans had the strongest CBD in the coun-

try in 2000, with 10.75% of MSA employment, followed by Austin (10.03%), Louisville

(9.48%), Jacksonville (8.44%), and Columbia, South Carolina (8.26%). While this is 2000

data, it seems very inconsistent with my results, given I found that that none of these metro

areas except Jacksonville had any CBD-density neighborhoods at all. Given that the CBDs

used by Brown and Neog (2012) are not necessarily particularly dense, their results say

little about the connection between job concentration and transit ridership.
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Figure 4.1: Transit commute share versus fraction of jobs in the central busi-
ness district for major US metro areas with either at least 4% transit commute
share or at least some jobs at CBD densities.
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A significant part of the reason that very high job densities promote transit use is that

at high densities, there simply isn’t enough space for everyone to drive to work. Roughly

four hundred square feet of paring lot space are needed to park each car; as density in-

creases it first becomes much more expensive to provide this space (when multi-level

parking garages become necessary) and then becomes essentially impossible in the densest

urban districts (Garreau, 1992, 466).

Whether this price is passed on to workers—through parking fees—or covered by

employers who provide free parking, significantly increases the cost of driving to a dense

central business district and is part of the reason that downtown LA is able to have parking

spaces for roughly one out of two workers, while the Chicago Loop has one parking space

for every seven workers and Midtown Manhattan has roughly one for every seventeen

(Moser, 2012). Limited parking, along with the traffic congestion when large numbers of

office workers arrive and depart their jobs at the same times, essentially requires a large

share of workers in dense CBDs to commute to work while the less-dense CBDs in most

American metro areas contain plentiful parking and road space, allowing workers to drive

to work with little added cost or inconvenience.

While having a large fraction of a metro area’s jobs in a dense central business dis-

trict clearly promotes transit ridership, it is clearly not the whole story behind Table 4.2.

Among other things, Madison and Portland have no CBD-density neighborhoods, and

Madison only has three percent of its employment in high-density neighborhoods. How-

ever, Madison is somewhat of a special case, as it has a relatively small population—
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640,000 residents—and its major employers are the state government and a large public

university, both employer types that are often inaccurately recorded in LEHD employment

data.

4.4.3 Transit Commute Share and Population Density

Population density is perhaps the most common statistic used to explain why some

cities are more suited to public transportation than others, so it makes sense to investigate

if it could explain some of the pattern in transit ridership among the sixteen major metro

areas discussed in Section 4.4.2.

A comparison of Table 4.2 on page 232 to my population-density clusters from Sec-

tion 3.2.2 shows that transit ridership does not seem to correspond with these clusters as

well as it does with the job-density clusters. Unsurprisingly, New York is again in a cluster

of its own, cluster 1, with 36% of its population in high-density neighborhoods. However,

while cluster 2 contains sevenmetros with between 4.6% and 11.5% of their populations in

high-density neighborhoods, only six of these—Honolulu (11.5%), San Francisco (9.8%),

Boston (7.8%), Chicago (6.0%), Philadelphia (5.1%), and Washington (4.6%)—are in the

top eight major metros by transit ridership.

Seattle, which has a higher transit commute share than Philadelphia or Honolulu,

is in cluster 3 with only 2.7% of its population in high-density neighborhoods. Nor can

this be explained by a large population in medium-density neighborhoods: only 5.2% of

Seattle’s population lives in such neighborhoods, while the cluster 2 metro areas—with the

exception of Washington, at 8.2%—have at least twice as large a share of their populations
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in medium-density neighborhoods. It is worth noting, as well, that Washington has the

third-highest transit commuter share among the major metropolitan areas despite having

the lowest shares of its population in both high-density and medium-density tracts among

the seven cluster 2 metro areas.

On the other hand, LosAngeles—which, as discussed in Section 3.3.2, has one of the

highest population densities in the country on a metro-area level—has a transit commuter

share of only 5.1%, lower than Portland, Baltimore, and Pittsburgh. While Los Angeles

only has 5.6% of its population in high-density neighborhoods—lower than Honolulu,

San Francisco, Boston, and Chicago—this is higher than the fractions in Philadelphia

(5.1%) and Washington (4.6%). Furthermore, a full 26% of Los Angeles’s residents live

in medium-density neighborhoods, the highest fraction in the United States.

The pattern that high- andmedium-density population is relatively uncorrelated with

transit commute share is visible at lower densities as well. Portland (6.5%) and Pittsburgh

(5.6%) have moderately-high transit commuter shares even though the fractions of their

population living at high or medium densities are 3.9% and 3.5% respectively. In com-

parison, San Diego and Miami have roughly half their transit commute shares (2.9% and

3.5%) despite having three times the population—11% to 12%—living at high or medium

densities and having significant rail transit systems.
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4.4.4 Public Transit Service and Neighborhood Types

One important factor influencing transit ridership that cannot be identified in metro

area-wide job and population distribution data is the quality of the public transportation in

a given metropolitan area. As discussed in Section 4.2, this has a number of components,

including the hours of operation, frequency, and reliability of transit lines. While these

factors are important and need to be carefully considered in a more complete study of the

topic, they are too complex to treat here.

One component of the quality of transit service that can be addressed relatively

briefly is the characteristics of the specific neighborhoods served. To that end, I have

plotted rapid transit and light rail lines, along with a few significant bus rapid transit

lines—using GIS shapefiles sourced from transit providers and local governments—on

the neighborhood type maps discussed in Section 3.2.

Rapid transit and light rail lines were included, while commuter rail and bus services

were generally excluded2 because rapid transit and light rail lines usually operate with the

highest frequencies and longest hours of service in metro areas, and so can be assumed to

provide relatively good service. While some bus lines also operate with high frequencies

and long hours of service in most or all of the metro areas under consideration, distin-

guishing these bus lines from others that do not in each metro area is a relatively large

project.
2Denver’s commuter rail lines are included because they—uniquely in the United States—operate at the

same frequencies with the same hours of service and charging the same fares as the city’s light rail lines.
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Figure 4.2: Light rail and bus rapid transit in the Pittsburgh metro area. Light
Rail lines are shown with black lines; the West, South, and East Busways with
brown lines. Note that all busways connect downtown via street running. The
area shown is a 30-mile by 30-mile square.
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Maps for the fourteen major metro areas with transit commute shares over 4% that

have rail transit—Honolulu and Madison do not at present, though a light metro line is

under construction in Honolulu—are presented in Appendix L. Here, I will discuss some

specific examples that are particularly illustrative.

Pittsburgh (see Figure 4.2 on page 240) is an interesting metro area to consider for

these purposes because it has a significantly lower transit commuter share than would be

expected from the fraction of metro area jobs in its CBD. Pittsburgh has only slightly

fewer jobs—4.2% versus 4.7%—at CBD densities than Philadelphia (see Figure 4.3 on

page 242), and has more jobs—9.8% versus 8.6% at non-CBD high densities. Despite

this, Pittsburgh has a transit commute share of 5.6% while Philadelphia’s transit commute

share is 9.5%. While part of this may be explained by population density—Philadelphia

has roughly five times as large a share of its population living at medium or high population

densities—the structure of Pittsburgh’s employment distribution and transit network likely

also plays a role.

Pittsburgh’s two light rail lines and its West and South Busways serve low-density

suburbs and, while the East Busway does pass through medium-density areas, its stops

largely seem to be located just on their edges. Even more problematically, while Pitts-

burgh’s light rail and bus rapid transit network converges on on the historic downtown at

the confluence of the Monongahela and Allegheny Rivers, it fails to serve the city’s dens-

est employment cluster: the uptown neighborhood of Oakland, home to Carnegie Mellon

University, the University of Pittsburgh, and technology companies such as Google that

have located in proximity to the universities.
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Figure 4.3: Rapid transit and light rail in the Philadelphia metro area. The
Market-Frankford Line, Broad Street Subway, PATCO Speedline, and Nor-
ristown High-Speed Line are shown with thick lines; SEPTA and New Jersey
Transit light rail lines are shown with thin lines. Stops on street-running por-
tions of SEPTA light rail lines are closely spaced and not shown. The area
shown is a 30-mile by 30-mile square.
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Philadelphia’s rail transit, on the other hand, does a good job of serving the metro

area’s two largest job clusters: the central business district of Center City and the Uni-

versity City area around the University of Pennsylvania and Drexel University campuses,

both of which are served by the subway tunnel carrying the Market-Frankford Line rapid

transit line and the Subway-Surface light rail lines.

Much of the city’s core of medium- and high-density residential areas is also served

by rapid transit and light rail lines, although the high-density residential area to the south

of Market Street stands out as relatively under-served. It is also worth noting that Philadel-

phia’s high-quality transit service area could be significantly improved if better service was

provided by the SEPTARegional Rail commuter rail lines. This network, which covers the

built-up portion of the city fairly densely and extends relatively far into the suburbs is en-

tirely electrified and served by a four-track dedicated tunnel through the city center that was

built in the 1980’s. However, decades of proposals to provide frequent, through-running

rapid-transit-style service on some of the city’s regional rail lines have so far amounted to

nothing (Vuchic and Kikuchi, 1985; DeGraw, 1994; Johnston, 2016).

Baltimore (see Figure 4.4 on page 244) and LosAngeles (see Figure 4.5 on page 246)

are two other metro areas that, like Pittsburgh, have relatively dense job and population

clusters that their rail lines manage to fail to serve.

While Baltimore’s one-line Metro Subway rapid transit and its light rail line both

serve the city’s central business district to some degree—while, famously, failing to have

a direct transfer—they miss Baltimore’s main dense residential districts and—with the

exception of the Johns Hopkins UniversityMedical Campus—most of its main job clusters

outside of the central business district.
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Figure 4.4: Rapid transit and light rail in the Baltimore metro area. The Bal-
timore Metro Subway is shown with a thick line; the Baltimore Light Rail is
shown with thin lines. The area shown is a 30-mile by 30-mile square.
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This situation is, to a large degree, the product of racism-driven opposition to public

transit. Baltimore’s Metro Subway was originally intended to be the first line of a six-line

system. Early plans called for the line expected to have the highest ridership—a north-

south line through downtown and some of the highest-density residential districts, con-

necting to BWI Thurgood Marshall Airport and potentially the state capital in Annapolis

in the south and to the mall and major college at Towson in the north—to be built first.

However, racially-tinged opposition from residents of Baltimore’s southern suburbs

led these plans to be canceled and a line to the northwest, running along a rail line and a

freeway median in much less-dense areas to be built instead. When a north-south line was

eventually built, it was constructed on a much more limited budget, resulting in a light

rail line that runs slowly on surface streets (and was originally single-tracked) through

downtown and that misses residential and commercial districts north of downtown because

it runs along an old mainline rail right-of-way in a river valley.

Los Angeles began building rail transit at roughly the same time as Baltimore and,

although its system is rather more extensive, it also manages to miss or run just to the edge

of a number of significant high-density areas, as seen in Figure 4.5. Unlike Baltimore,

though—where the one recent attempt to build a new rail line, the Red Line, was canceled

by the governor after it had received Federal funding andwas ready to begin construction—

Los Angeles is currently in the construction or planning stages of building a number of

new rail lines, some of which, such as the under-construction Purple Line Extension, will

serve a number of the most significant missed destinations.
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Figure 4.5: Rapid transit, light rail, and bus rapid transit in the Los Angeles
metro area. The Red and Purple Lines are shown with thick lines; the Blue,
Expo and, Gold, Lines are shown with thin lines; the Orange and Silver Lines
are shown with brown lines. The area shown is a 30-mile by 30-mile square.
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Portland (see Figure 4.6 on page 248) is an opposite case to Pittsburgh, as it has a

significantly higher transit commuter share than would be expected for its relatively weak,

low-density CBD. This high transit share cannot be explained by a high population density,

either: only 3.9% of Portland residents live in high- or medium-density neighborhoods.

Unfortunately, it is not evident from the map in Figure 4.6 why Portland’s transit

is relatively successful in comparison to the city’s low job and population density. Part

of the answer may be that it does do a very good job of fully covering the large but low-

density commercial core. Portland also generally has a good reputation for transit-oriented

development: it is possible that dense but relatively small developments located at transit

stations provide a significant number of riders despite being too small to bring the hexes

containing them up to the density cut-off to appear on the map.

This considered, Portland is a good place to close this thesis, since it demonstrates

the limitations of the techniques discussed herein for fully identifying the factors that con-

tribute to transit ridership in US metro areas, and thus shows the need for future work on

this topic.
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Figure 4.6: Light rail and streetcars in the Portland metro area. The MAX
Light Rail is shown with thick lines; the Portland Streetcar is shown with thin
lines. Stops on the streetcar are closely spaced and not shown. The area shown
is a 30-mile by 30-mile square.
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4.4.5 Density, Transit Commuters, and Carfree Households

Another issue which may deserve further examination is the question of what den-

sities transit commuters and carfree households—households that do not own or lease any

motor vehicles—live at in various metro areas. One would expect such commuters and

households to live at higher densities than average given the structure of American metro

areas and transit networks.

In the lower-density portions of US metro areas, it is generally simply impossible

to commute entirely by transit—these areas are not served by transit—although some res-

idents do drive to park-and-ride lots and take commuter trains, buses or (occasionally)

ferries the rest of the way to work. Likewise, the lack of transit and long distances make

it nearly impossible to go about daily tasks without a car in these low density areas, even

if one does not need to commute regularly.

While the densest portions of American metro areas usually have at least some pub-

lic transportation and, in some cities, have very good public transportation, not everyone

who lives in these neighborhoods commutes by transit and lives without a car, either. In

particularly dense areas, it is often easy to walk or bike to work rather than using tran-

sit. Furthermore, the fact that most of the land and many or most of the jobs, stores, and

residents of even the best-served US metro areas are effectively or entirely out of reach

of public transportation means that residents of dense urban neighborhoods often have an

incentive to own a car if they can afford one.
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To investigate the relationship between density and commuting by transit, I tabulated

the percentages of workers who commute by transit, the median activity densities that

transit commuters and workers overall live at, and the ratios of these median densities for

each of the the ten major metro areas with the highest and lowest ratios in Table 4.3 on

page 251. A complete tabulation of this data for the sixty largest metro areas in the country

can be found in Table K.3 on page 689.

Interestingly, it appears that at least four separate phenomena are involved in the

relative densities that transit commuters and workers overall live at. The cites with rela-

tively small differences in the densities that these groups live at are largely dispersed metro

areas without strong cores of dense residential neighborhoods but also, as discussed in

Section 3.3.2, without the bands of very-low-density exurban development that surrounds

most American metro areas. Two of them—Omaha and Oklahoma City—also have tran-

sit commute shares of less than 1%, which may indicate especially low-quality transit

networks that even residents of dense areas are strongly incentivized to find alternatives

to using.

The major metro area with the lowest difference between the densities at which tran-

sit commuters and workers overall live, however, is an example of a completely different

phenomenon. Bridgeport has one of the highest transit commute shares in the country—

10%—but the majority of its transit commuters use Metro-North commuter rail to com-

mute to jobs in New York City. Although some Metro-North commuter rail stations are

located in the historic cores of smaller cities, most of its ridership drives to park-and-ride

lots before taking the train into the city.
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Table 4.3: Metro Areas Where Transit Commuters Live at Elevated Densities

Metro Area

% of
Workers
Who

Commute
by Transit

Median
Activity
Density of
Workers
( / sq. mi.)

Median
Activity
Density of
Transit

Commuters
( / sq. mi.)

Transit
Commuter
Median /
Overall
Median

Rochester 2.3% 2,600 9,200 355%
Boston 13.3% 5,500 18,200 331%
New York 31.9% 17,000 55,200 324%
Philadelphia 9.5% 5,100 16,100 316%
Hartford 2.8% 2,500 7,000 284%
Chicago 12.1% 6,500 17,500 269%
Pittsburgh 5.7% 2,600 6,800 259%
Grand Rapids 1.5% 2,500 6,500 258%
Milwaukee 3.3% 4,800 10,000 210%
Buffalo 3.3% 4,400 9,100 208%
... ... ... ... ...
Dallas 1.4% 5,200 6,900 133%
Las Vegas 3.8% 8,000 10,600 132%
Riverside 1.4% 5,500 7,100 129%
Denver 4.2% 6,400 8,200 128%
Omaha 0.9% 4,500 5,700 127%
Oklahoma City 0.4% 3,600 4,600 126%
Salt Lake City 3.7% 6,400 7,800 121%
San Jose 4.2% 11,100 13,100 118%
Sacramento 2.4% 6,300 7,300 117%
Bridgeport 10% 4,800 5,300 110%
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Furthermore, the extreme traffic congestion and expense of parking in Manhattan

and the fact that the highest concentration of jobs in the entire US is located within walk-

ing distance of Grand Central, Metro North’s New York terminal, mean that almost all

Bridgeport residents commuting to jobs in New York find it worthwhile to take commuter

rail even if they have to drive a significant distance to a station. As a result—as with

residents of the other commuter-rail suburbs discussed in Section 4.4.1—there is little

difference between the densities at which these workers live and the densities at which

workers in the metro area overall live.

As for the metro areas with large differences between the densities that transit com-

muters and workers overall live at, these also seem to fall into two categories. Several of

them—New York, Chicago, Boston, Philadelphia, and to some extent Pittsburgh—have

high transit commuter shares and relatively effective transit service, which means that

people who live in dense parts of these metro areas are likely to find commuting by transit

convenient. In addition, the densest areas of New York and Boston have gentrified rapidly

in recent years and it is likely that being able to commute by transit is part of what attracts

residents to these areas despite the cost premium.

It is worth noting that San Francisco and Washington—with the second- and third-

highest transit commute shares in the nation—does not have a especially high differences

in the median densities that transit commuters and workers overall live at. This likely

reflects that—unlike the pre-World War II rapid transit systems in New York, Chicago,

Boston, and Philadelphia and the still-under-construction light rail system in Seattle—

BART in San Francisco andMetrorail inWashington extend far into relatively-low density

suburbs and have numerous stations located at park-and-rides. Because these metro areas
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also have very dense CBDs with many jobs and where driving and parking inconvenient,

many residents of low-density areas commute by driving to a park-and-ride station, as in

Hartford3.

Other metro areas with large differences between the densities at which transit com-

muters and workers overall live, however—Rochester, Hartford, Grand Rapids, Milwau-

kee, Buffalo, in particular—do not have especially dense cores, particularly large shares

of transit commuters. These may, instead, be cases of transit systems that simply do not

serve lower-density populations at all—thus requiring that their riders live in the densest

parts of the region—or may be evidence of large populations low-income or otherwise

involuntarily carfree residents concentrated in denser parts of the regions. The fact that

these are—except for Hartford—particularly economically stagnant metro areas supports

this hypothesis.

One potential way to determine if the large differences between the densities at which

transit commuters and workers overall live in these cities is to consider the number of car-

free households that do not commute by transit. Since these metro areas do not have

particularly dense cores—and since they generally have relatively unpleasant weather that

would discourage biking to work much of the year—these are likely households that can-

not afford car ownership or where residents are otherwise unable to use a car, but where

transit does not provide a viable commuting option. Buffalo (9.4 percentage points) and

Rochester (8.0 percentage points), followed by Detroit, New Orleans, and Cleveland (each

7.5 percentage points) are the top metro areas by this metric.
3In the case of San Francisco, this is also, yet again, the phenomenon discussed in Section 3.3.2 cropping

up: because San Francisco, like other Californian cities, lacks a substantial belt of low-density exurbia, the
densities that workers overall live at are relatively higher than they would be in the Northeastern transit cities,
all of which have such belts.
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The differences in the activity densities where carfree households are found and the

densities where households in general are found in various metro areas also merits some

examination. To this end, I tabulated the percentages of carfree households, the median

activity densities where carfree households and and households in general are located,

and the ratios of these median densities for each of the the ten major metro areas with the

highest and lowest ratios in Table 4.4 on page 255. A complete tabulation of this data for

the sixty largest metro areas in the country can be found in Table K.4 on page 683.

As expected, carfree households, like transit commuters, are consistently found liv-

ing in denser areas than households overall. The effect is even larger, in fact: transit

commuters lived at median densities between 355% and 110% of the median densities

for workers in their metro areas, while carfree households are found at median densities

between 390% and 120% of the median densities for households in their metro areas.

The ten metro areas where carfree households live at the most elevated densities

relative to households overall again seems to include two populations. Boston, New York,

Philadelphia, San Francisco, Washington, and Honolulu have some of the densest residen-

tial cores in the country, where car ownership is both especially expensive and unusually

easy to get along without4. Furthermore, as mentioned above, the dense cores of Boston,

New York, San Francisco, and Washington have seen particularly extreme gentrification

in recent years, with influxes of populations willing to pay a premium to live in these

neighborhoods because they can easily do so without owning a car or driving regularly.
4It is particularly noteworthy that San Francisco and Honolulu place sixth and ninth in this ranking,

since both metro areas are strongly geographically constrained and so have relatively smaller variations of
residential density.
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Table 4.4: Metro Areas Where Carfree Households Live at Elevated Densities

Metro Area % Carfree
Households

Median
Activity
Density of
Households
( / sq. mi.)

Median
Activity
Density of
Carfree

Households
( / sq. mi.)

Carfree
Household
Median /
Overall
Median

Boston 13.1% 5,600 21,500 390%
New York 30.7% 19,200 67,800 350%
Philadelphia 13.0% 5,500 17,600 320%
Worcester 9.0% 1,900 6,000 320%
Hartford 9.1% 2,600 7,100 270%
San Francisco 12.2% 11,500 29,800 260%
Washington 9.7% 6,400 16,200 260%
Bridgeport 7.7% 4,600 11,500 250%
Honolulu 10.2% 10,700 26,100 240%
Providence 10.0% 4,300 10,300 240%
... ... ... ... ...
Sacramento 6.3% 6,200 7,900 130%
Detroit 8.9% 4,600 5,700 130%
Salt Lake City 5.2% 6,600 8,300 130%
Omaha 6.0% 4,500 5,600 120%
Memphis 7.8% 3,200 3,900 120%
Oklahoma City 5.0% 3,600 4,500 120%
Dallas 4.8% 5,200 6,300 120%
Kansas City 6.1% 3,300 4,100 120%
San Jose 5.1% 10,800 13,200 120%
Riverside 4.7% 5,000 5,900 120%
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The other four metro areas in the top ten—Worcester, Hartford, Bridgeport, and

Providence (it is notable that they are all located in southern New England)—seem to fall

in a different category altogether. All are relatively small metro areas and Worcester and

Providence are both home to relatively large college student populations in their dense

cores, and it seems likely that these students make up a non-trivial portion of the high-

density carfree households. Beyond this, I am not sure what the cause is likely to be. As for

the ten metro areas where carfree households live at densities most similar to the densities

where households in general are found, a number of these do seem to be examples of metro

areas that have relatively little density variation because they lack both high-density cores

and substantial very-low-density exurban belts.
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Appendix A: List of CBSAs with Assigned UTM Zones

Table A.1 lists the 926 core-based statistical areas studied, along with the UTM

zones they were assigned to, as discussed in Section 2.2.2, and the EPSG Geodetic Pa-

rameter Dataset codes for the associated coordinate reference systems.

Table A.1: List of CBSAs with Assigned UTM Zones

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

- 10100 Aberdeen, SD 32614 14N

- 10140 Aberdeen, WA 32610 10N

- 10180 Abilene, TX 32614 14N

- 10220 Ada, OK 32614 14N

220 10300 Adrian, MI 32617 17N

184 10420 Akron, OH 32617 17N

- 10460 Alamogordo, NM 32613 13N

- 10500 Albany, GA 32616 16N

440 10540 Albany-Lebanon, OR 32610 10N

104 10580 Albany-Schenectady-Troy, NY 32618 18N

172 10620 Albemarle, NC 32617 17N

- 10660 Albert Lea, MN 32615 15N

- 10700 Albertville, AL 32616 16N

106 10740 Albuquerque, NM 32613 13N

388 10760 Alexander City, AL 32616 16N

- 10780 Alexandria, LA 32615 15N

Continued on next page
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Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

- 10820 Alexandria, MN 32615 15N

204 10860 Alice, TX 32614 14N

- 10900 Allentown-Bethlehem-Easton, PA-NJ 32618 18N

394 10940 Alma, MI 32616 16N

- 10980 Alpena, MI 32617 17N

107 11020 Altoona, PA 32617 17N

- 11060 Altus, OK 32614 14N

108 11100 Amarillo, TX 32614 14N

- 11140 Americus, GA 32616 16N

218 11180 Ames, IA 32615 15N

104 11220 Amsterdam, NY 32618 18N

- 11260 Anchorage, AK 32606 6N

- 11380 Andrews, TX 32613 13N

258 11420 Angola, IN 32616 16N

220 11460 Ann Arbor, MI 32617 17N

- 11500 Anniston-Oxford, AL 32616 16N

118 11540 Appleton, WI 32616 16N

412 11580 Arcadia, FL 32617 17N

- 11620 Ardmore, OK 32614 14N

- 11660 Arkadelphia, AR 32615 15N

120 11700 Asheville, NC 32617 17N

360 11740 Ashland, OH 32617 17N

184 11780 Ashtabula, OH 32617 17N

- 11820 Astoria, OR 32610 10N

312 11860 Atchison, KS 32615 15N

- 11900 Athens, OH 32617 17N

174 11940 Athens, TN 32616 16N

206 11980 Athens, TX 32614 14N

122 12020 Athens-Clarke County, GA 32616 16N

122 12060 Atlanta-Sandy Springs-Alpharetta, GA 32616 16N

Continued on next page
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Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

428 12100 Atlantic City-Hammonton, NJ 32618 18N

426 12120 Atmore, AL 32616 16N

258 12140 Auburn, IN 32616 16N

532 12180 Auburn, NY 32618 18N

194 12220 Auburn-Opelika, AL 32616 16N

- 12260 Augusta-Richmond County, GA-SC 32617 17N

- 12300 Augusta-Waterville, ME 32619 19N

462 12380 Austin, MN 32615 15N

- 12420 Austin-Round Rock-Georgetown, TX 32614 14N

- 12460 Bainbridge, GA 32616 16N

- 12540 Bakersfield, CA 32611 11N

548 12580 Baltimore-Columbia-Towson, MD 32618 18N

- 12620 Bangor, ME 32619 19N

357 12660 Baraboo, WI 32616 16N

350 12680 Bardstown, KY 32616 16N

148 12700 Barnstable Town, MA 32619 19N

162 12740 Barre, VT 32618 18N

538 12780 Bartlesville, OK 32615 15N

464 12860 Batavia, NY 32618 18N

- 12900 Batesville, AR 32615 15N

- 12940 Baton Rouge, LA 32615 15N

310 12980 Battle Creek, MI 32616 16N

474 13020 Bay City, MI 32617 17N

288 13060 Bay City, TX 32615 15N

339 13100 Beatrice, NE 32614 14N

- 13140 Beaumont-Port Arthur, TX 32615 15N

376 13180 Beaver Dam, WI 32616 16N

- 13220 Beckley, WV 32617 17N

144 13260 Bedford, IN 32616 16N

- 13300 Beeville, TX 32614 14N

Continued on next page
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Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

198 13340 Bellefontaine, OH 32617 17N

- 13380 Bellingham, WA 32610 10N

- 13420 Bemidji, MN 32615 15N

140 13460 Bend, OR 32610 10N

- 13500 Bennettsville, SC 32617 17N

- 13540 Bennington, VT 32618 18N

- 13620 Berlin, NH 32619 19N

266 13660 Big Rapids, MI 32616 16N

- 13700 Big Spring, TX 32614 14N

- 13720 Big Stone Gap, VA 32617 17N

- 13740 Billings, MT 32612 12N

- 13780 Binghamton, NY 32618 18N

142 13820 Birmingham-Hoover, AL 32616 16N

- 13900 Bismarck, ND 32614 14N

292 13940 Blackfoot, ID 32612 12N

- 13980 Blacksburg-Christiansburg, VA 32617 17N

145 14010 Bloomington, IL 32616 16N

144 14020 Bloomington, IN 32616 16N

146 14100 Bloomsburg-Berwick, PA 32618 18N

- 14140 Bluefield, WV-VA 32617 17N

- 14180 Blytheville, AR 32616 16N

406 14220 Bogalusa, LA 32615 15N

147 14260 Boise City, ID 32611 11N

206 14300 Bonham, TX 32614 14N

- 14380 Boone, NC 32617 17N

108 14420 Borger, TX 32614 14N

148 14460 Boston-Cambridge-Newton, MA-NH 32619 19N

216 14500 Boulder, CO 32613 13N

150 14540 Bowling Green, KY 32616 16N

- 14580 Bozeman, MT 32612 12N

Continued on next page
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Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

- 14620 Bradford, PA 32617 17N

- 14660 Brainerd, MN 32615 15N

- 14700 Branson, MO 32615 15N

- 14720 Breckenridge, CO 32613 13N

500 14740 Bremerton-Silverdale-Port Orchard, WA 32610 10N

288 14780 Brenham, TX 32615 15N

120 14820 Brevard, NC 32617 17N

408 14860 Bridgeport-Stamford-Norwalk, CT 32618 18N

298 15020 Brookhaven, MS 32615 15N

- 15060 Brookings, OR 32610 10N

- 15100 Brookings, SD 32614 14N

297 15140 Brownsville, TN 32616 16N

154 15180 Brownsville-Harlingen, TX 32614 14N

- 15220 Brownwood, TX 32614 14N

- 15260 Brunswick, GA 32617 17N

360 15340 Bucyrus-Galion, OH 32617 17N

160 15380 Buffalo-Cheektowaga, NY 32617 17N

- 15420 Burley, ID 32612 12N

161 15460 Burlington, IA-IL 32615 15N

268 15500 Burlington, NC 32617 17N

162 15540 Burlington-South Burlington, VT 32618 18N

- 15580 Butte-Silver Bow, MT 32612 12N

- 15620 Cadillac, MI 32616 16N

174 15660 Calhoun, GA 32616 16N

548 15680 California-Lexington Park, MD 32618 18N

480 15700 Cambridge, MD 32618 18N

198 15740 Cambridge, OH 32617 17N

- 15780 Camden, AR 32615 15N

- 15820 Campbellsville, KY 32616 16N

444 15860 Canon City, CO 32613 13N

Continued on next page
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Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

184 15940 Canton-Massillon, OH 32617 17N

163 15980 Cape Coral-Fort Myers, FL 32617 17N

164 16020 Cape Girardeau, MO-IL 32616 16N

- 16060 Carbondale-Marion, IL 32616 16N

- 16100 Carlsbad-Artesia, NM 32613 13N

- 16140 Carroll, IA 32615 15N

456 16180 Carson City, NV 32611 11N

- 16220 Casper, WY 32613 13N

- 16260 Cedar City, UT 32612 12N

168 16300 Cedar Rapids, IA 32615 15N

122 16340 Cedartown, GA 32616 16N

338 16380 Celina, OH 32616 16N

- 16420 Central City, KY 32616 16N

476 16460 Centralia, IL 32615 15N

500 16500 Centralia, WA 32610 10N

548 16540 Chambersburg-Waynesboro, PA 32618 18N

- 16580 Champaign-Urbana, IL 32616 16N

170 16620 Charleston, WV 32617 17N

- 16660 Charleston-Mattoon, IL 32616 16N

- 16700 Charleston-North Charleston, SC 32617 17N

172 16740 Charlotte-Concord-Gastonia, NC-SC 32617 17N

- 16820 Charlottesville, VA 32617 17N

174 16860 Chattanooga, TN-GA 32616 16N

- 16940 Cheyenne, WY 32613 13N

176 16980 Chicago-Naperville-Elgin, IL-IN-WI 32616 16N

- 17020 Chico, CA 32610 10N

198 17060 Chillicothe, OH 32617 17N

178 17140 Cincinnati, OH-KY-IN 32616 16N

- 17220 Clarksburg, WV 32617 17N

- 17260 Clarksdale, MS 32615 15N

Continued on next page
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Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

- 17300 Clarksville, TN-KY 32616 16N

- 17340 Clearlake, CA 32610 10N

185 17380 Cleveland, MS 32615 15N

174 17420 Cleveland, TN 32616 16N

184 17460 Cleveland-Elyria, OH 32617 17N

163 17500 Clewiston, FL 32617 17N

209 17540 Clinton, IA 32615 15N

188 17580 Clovis, NM 32613 13N

518 17660 Coeur d’Alene, ID 32611 11N

- 17700 Coffeyville, KS 32615 15N

310 17740 Coldwater, MI 32616 16N

- 17780 College Station-Bryan, TX 32614 14N

- 17820 Colorado Springs, CO 32613 13N

190 17860 Columbia, MO 32615 15N

192 17900 Columbia, SC 32617 17N

194 17980 Columbus, GA-AL 32616 16N

294 18020 Columbus, IN 32616 16N

200 18060 Columbus, MS 32616 16N

- 18100 Columbus, NE 32614 14N

198 18140 Columbus, OH 32617 17N

148 18180 Concord, NH 32619 19N

458 18220 Connersville, IN 32616 16N

- 18260 Cookeville, TN 32616 16N

- 18300 Coos Bay, OR 32610 10N

- 18380 Cordele, GA 32617 17N

539 18420 Corinth, MS 32616 16N

122 18460 Cornelia, GA 32616 16N

236 18500 Corning, NY 32618 18N

204 18580 Corpus Christi, TX 32614 14N

206 18620 Corsicana, TX 32614 14N
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296 18660 Cortland, NY 32618 18N

440 18700 Corvallis, OR 32610 10N

- 18740 Coshocton, OH 32617 17N

525 18780 Craig, CO 32613 13N

294 18820 Crawfordsville, IN 32616 16N

- 18860 Crescent City, CA 32610 10N

- 18880 Crestview-Fort Walton Beach-Destin, FL 32616 16N

- 18900 Crossville, TN 32616 16N

142 18980 Cullman, AL 32616 16N

- 19000 Cullowhee, NC 32617 17N

- 19060 Cumberland, MD-WV 32617 17N

206 19100 Dallas-Fort Worth-Arlington, TX 32614 14N

174 19140 Dalton, GA 32616 16N

- 19180 Danville, IL 32616 16N

- 19220 Danville, KY 32616 16N

- 19260 Danville, VA 32617 17N

380 19300 Daphne-Fairhope-Foley, AL 32616 16N

209 19340 Davenport-Moline-Rock Island, IA-IL 32615 15N

174 19420 Dayton, TN 32616 16N

212 19430 Dayton-Kettering, OH 32616 16N

290 19460 Decatur, AL 32616 16N

- 19500 Decatur, IL 32616 16N

258 19540 Decatur, IN 32616 16N

- 19580 Defiance, OH 32616 16N

- 19620 Del Rio, TX 32614 14N

422 19660 Deltona-Daytona Beach-Ormond Beach, FL 32617 17N

- 19700 Deming, NM 32613 13N

216 19740 Denver-Aurora-Lakewood, CO 32613 13N

217 19760 DeRidder, LA 32615 15N

218 19780 Des Moines-West Des Moines, IA 32615 15N
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220 19820 Detroit-Warren-Dearborn, MI 32617 17N

- 19860 Dickinson, ND 32613 13N

221 19940 Dixon, IL 32616 16N

- 19980 Dodge City, KS 32614 14N

222 20020 Dothan, AL 32616 16N

- 20060 Douglas, GA 32617 17N

428 20100 Dover, DE 32618 18N

- 20140 Dublin, GA 32617 17N

524 20180 DuBois, PA 32618 18N

- 20220 Dubuque, IA 32615 15N

- 20260 Duluth, MN-WI 32615 15N

- 20300 Dumas, TX 32614 14N

- 20340 Duncan, OK 32614 14N

- 20420 Durango, CO 32613 13N

206 20460 Durant, OK 32614 14N

450 20500 Durham-Chapel Hill, NC 32617 17N

- 20540 Dyersburg, TN 32616 16N

- 20580 Eagle Pass, TX 32614 14N

548 20660 Easton, MD 32618 18N

408 20700 East Stroudsburg, PA 32618 18N

232 20740 Eau Claire, WI 32615 15N

233 20780 Edwards, CO 32613 13N

- 20820 Effingham, IL 32616 16N

288 20900 El Campo, TX 32615 15N

- 20940 El Centro, CA 32611 11N

- 20980 El Dorado, AR 32615 15N

545 21020 Elizabeth City, NC 32618 18N

350 21060 Elizabethtown-Fort Knox, KY 32616 16N

- 21120 Elk City, OK 32614 14N

515 21140 Elkhart-Goshen, IN 32616 16N
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- 21180 Elkins, WV 32617 17N

- 21220 Elko, NV 32611 11N

- 21260 Ellensburg, WA 32610 10N

236 21300 Elmira, NY 32618 18N

238 21340 El Paso, TX 32613 13N

- 21380 Emporia, KS 32614 14N

- 21420 Enid, OK 32614 14N

- 21460 Enterprise, AL 32616 16N

240 21500 Erie, PA 32617 17N

- 21540 Escanaba, MI 32616 16N

106 21580 Espanola, NM 32613 13N

- 21640 Eufaula, AL-GA 32616 16N

- 21660 Eugene-Springfield, OR 32610 10N

- 21700 Eureka-Arcata, CA 32610 10N

- 21740 Evanston, WY 32612 12N

- 21780 Evansville, IN-KY 32616 16N

- 21820 Fairbanks, AK 32606 6N

- 21840 Fairfield, IA 32615 15N

- 21860 Fairmont, MN 32615 15N

390 21900 Fairmont, WV 32617 17N

- 21980 Fallon, NV 32611 11N

244 22020 Fargo, ND-MN 32614 14N

378 22060 Faribault-Northfield, MN 32615 15N

476 22100 Farmington, MO 32615 15N

- 22140 Farmington, NM 32612 12N

246 22180 Fayetteville, NC 32617 17N

- 22220 Fayetteville-Springdale-Rogers, AR 32615 15N

- 22260 Fergus Falls, MN 32615 15N

456 22280 Fernley, NV 32611 11N

534 22300 Findlay, OH 32617 17N
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- 22340 Fitzgerald, GA 32617 17N

- 22380 Flagstaff, AZ 32612 12N

220 22420 Flint, MI 32617 17N

- 22500 Florence, SC 32617 17N

- 22520 Florence-Muscle Shoals, AL 32616 16N

- 22540 Fond du Lac, WI 32616 16N

- 22580 Forest City, NC 32617 17N

368 22620 Forrest City, AR 32616 16N

- 22660 Fort Collins, CO 32613 13N

- 22700 Fort Dodge, IA 32615 15N

- 22780 Fort Leonard Wood, MO 32615 15N

161 22800 Fort Madison-Keokuk, IA-IL-MO 32615 15N

- 22820 Fort Morgan, CO 32613 13N

497 22840 Fort Payne, AL 32616 16N

217 22860 Fort Polk South, LA 32615 15N

- 22900 Fort Smith, AR-OK 32615 15N

258 23060 Fort Wayne, IN 32616 16N

320 23140 Frankfort, IN 32616 16N

336 23180 Frankfort, KY 32616 16N

314 23240 Fredericksburg, TX 32614 14N

466 23300 Freeport, IL 32616 16N

420 23340 Fremont, NE 32614 14N

534 23380 Fremont, OH 32617 17N

260 23420 Fresno, CA 32611 11N

- 23460 Gadsden, AL 32616 16N

273 23500 Gaffney, SC 32617 17N

264 23540 Gainesville, FL 32617 17N

122 23580 Gainesville, GA 32616 16N

206 23620 Gainesville, TX 32614 14N

- 23660 Galesburg, IL 32615 15N
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- 23700 Gallup, NM 32612 12N

- 23780 Garden City, KS 32614 14N

456 23820 Gardnerville Ranchos, NV 32611 11N

396 23860 Georgetown, SC 32617 17N

276 23900 Gettysburg, PA 32618 18N

- 23940 Gillette, WY 32613 13N

150 23980 Glasgow, KY 32616 16N

104 24020 Glens Falls, NY 32618 18N

233 24060 Glenwood Springs, CO 32613 13N

104 24100 Gloversville, NY 32618 18N

- 24140 Goldsboro, NC 32618 18N

206 24180 Granbury, TX 32614 14N

- 24220 Grand Forks, ND-MN 32614 14N

- 24260 Grand Island, NE 32614 14N

- 24300 Grand Junction, CO 32612 12N

- 24330 Grand Rapids, MN 32615 15N

266 24340 Grand Rapids-Kentwood, MI 32616 16N

- 24380 Grants, NM 32613 13N

366 24420 Grants Pass, OR 32610 10N

- 24460 Great Bend, KS 32614 14N

- 24500 Great Falls, MT 32612 12N

216 24540 Greeley, CO 32613 13N

267 24580 Green Bay, WI 32616 16N

- 24620 Greeneville, TN 32617 17N

268 24660 Greensboro-High Point, NC 32617 17N

294 24700 Greensburg, IN 32616 16N

- 24740 Greenville, MS 32615 15N

272 24780 Greenville, NC 32618 18N

212 24820 Greenville, OH 32616 16N

273 24860 Greenville-Anderson, SC 32617 17N
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- 24900 Greenwood, MS 32615 15N

273 24940 Greenwood, SC 32617 17N

- 24980 Grenada, MS 32616 16N

- 25060 Gulfport-Biloxi, MS 32616 16N

- 25100 Guymon, OK 32614 14N

548 25180 Hagerstown-Martinsburg, MD-WV 32618 18N

- 25200 Hailey, ID 32611 11N

406 25220 Hammond, LA 32615 15N

260 25260 Hanford-Corcoran, CA 32611 11N

448 25300 Hannibal, MO 32615 15N

276 25420 Harrisburg-Carlisle, PA 32618 18N

- 25460 Harrison, AR 32615 15N

277 25500 Harrisonburg, VA 32617 17N

278 25540 Hartford-East Hartford-Middletown, CT 32618 18N

- 25580 Hastings, NE 32614 14N

279 25620 Hattiesburg, MS 32616 16N

- 25700 Hays, KS 32614 14N

482 25720 Heber, UT 32612 12N

- 25740 Helena, MT 32612 12N

- 25760 Helena-West Helena, AR 32615 15N

450 25780 Henderson, NC 32617 17N

- 25820 Hereford, TX 32613 13N

- 25840 Hermiston-Pendleton, OR 32611 11N

- 25860 Hickory-Lenoir-Morganton, NC 32617 17N

- 25880 Hillsdale, MI 32616 16N

- 25900 Hilo, HI 32605 5N

- 25940 Hilton Head Island-Bluffton, SC 32617 17N

496 25980 Hinesville, GA 32617 17N

- 26020 Hobbs, NM 32613 13N

266 26090 Holland, MI 32616 16N
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- 26140 Homosassa Springs, FL 32617 17N

- 26220 Hood River, OR 32610 10N

- 26260 Hope, AR 32615 15N

284 26300 Hot Springs, AR 32615 15N

- 26340 Houghton, MI 32616 16N

- 26380 Houma-Thibodaux, LA 32615 15N

288 26420 Houston-The Woodlands-Sugar Land, TX 32615 15N

104 26460 Hudson, NY 32618 18N

107 26500 Huntingdon, PA 32617 17N

258 26540 Huntington, IN 32616 16N

170 26580 Huntington-Ashland, WV-KY-OH 32617 17N

290 26620 Huntsville, AL 32616 16N

288 26660 Huntsville, TX 32615 15N

- 26700 Huron, SD 32614 14N

- 26740 Hutchinson, KS 32614 14N

378 26780 Hutchinson, MN 32615 15N

292 26820 Idaho Falls, ID 32612 12N

430 26860 Indiana, PA 32617 17N

294 26900 Indianapolis-Carmel-Anderson, IN 32616 16N

185 26940 Indianola, MS 32615 15N

168 26980 Iowa City, IA 32615 15N

361 27020 Iron Mountain, MI-WI 32616 16N

296 27060 Ithaca, NY 32618 18N

- 27100 Jackson, MI 32616 16N

298 27140 Jackson, MS 32615 15N

- 27160 Jackson, OH 32617 17N

297 27180 Jackson, TN 32616 16N

- 27220 Jackson, WY-ID 32612 12N

300 27260 Jacksonville, FL 32617 17N

522 27300 Jacksonville, IL 32616 16N
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- 27340 Jacksonville, NC 32618 18N

540 27380 Jacksonville, TX 32615 15N

- 27420 Jamestown, ND 32614 14N

- 27460 Jamestown-Dunkirk-Fredonia, NY 32617 17N

357 27500 Janesville-Beloit, WI 32616 16N

142 27530 Jasper, AL 32616 16N

- 27540 Jasper, IN 32616 16N

122 27600 Jefferson, GA 32616 16N

- 27620 Jefferson City, MO 32615 15N

324 27660 Jennings, LA 32615 15N

496 27700 Jesup, GA 32617 17N

304 27740 Johnson City, TN 32617 17N

306 27780 Johnstown, PA 32617 17N

308 27860 Jonesboro, AR 32615 15N

309 27900 Joplin, MO 32615 15N

- 27940 Juneau, AK 32608 8N

- 27980 Kahului-Wailuku-Lahaina, HI 32604 4N

310 28020 Kalamazoo-Portage, MI 32616 16N

- 28060 Kalispell, MT 32611 11N

176 28100 Kankakee, IL 32616 16N

312 28140 Kansas City, MO-KS 32615 15N

- 28180 Kapaa, HI 32604 4N

- 28260 Kearney, NE 32614 14N

- 28300 Keene, NH 32618 18N

258 28340 Kendallville, IN 32616 16N

- 28380 Kennett, MO 32615 15N

313 28420 Kennewick-Richland, WA 32611 11N

314 28500 Kerrville, TX 32614 14N

- 28540 Ketchikan, AK 32609 9N

370 28580 Key West, FL 32617 17N
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545 28620 Kill Devil Hills, NC 32618 18N

- 28660 Killeen-Temple, TX 32614 14N

304 28700 Kingsport-Bristol, TN-VA 32617 17N

408 28740 Kingston, NY 32618 18N

204 28780 Kingsville, TX 32614 14N

272 28820 Kinston, NC 32618 18N

- 28860 Kirksville, MO 32615 15N

- 28900 Klamath Falls, OR 32610 10N

315 28940 Knoxville, TN 32617 17N

316 29020 Kokomo, IN 32616 16N

148 29060 Laconia, NH 32619 19N

- 29100 La Crosse-Onalaska, WI-MN 32615 15N

318 29180 Lafayette, LA 32615 15N

320 29200 Lafayette-West Lafayette, IN 32616 16N

- 29260 La Grande, OR 32611 11N

122 29300 LaGrange, GA-AL 32616 16N

324 29340 Lake Charles, LA 32615 15N

264 29380 Lake City, FL 32617 17N

- 29420 Lake Havasu City-Kingman, AZ 32611 11N

422 29460 Lakeland-Winter Haven, FL 32617 17N

- 29500 Lamesa, TX 32614 14N

- 29540 Lancaster, PA 32618 18N

- 29620 Lansing-East Lansing, MI 32616 16N

- 29660 Laramie, WY 32613 13N

- 29700 Laredo, TX 32614 14N

238 29740 Las Cruces, NM 32613 13N

106 29780 Las Vegas, NM 32613 13N

332 29820 Las Vegas-Henderson-Paradise, NV 32611 11N

279 29860 Laurel, MS 32616 16N

246 29900 Laurinburg, NC 32617 17N
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312 29940 Lawrence, KS 32615 15N

400 29980 Lawrenceburg, TN 32616 16N

- 30020 Lawton, OK 32614 14N

- 30060 Lebanon, MO 32615 15N

- 30100 Lebanon, NH-VT 32618 18N

276 30140 Lebanon, PA 32618 18N

352 30220 Levelland, TX 32614 14N

146 30260 Lewisburg, PA 32618 18N

400 30280 Lewisburg, TN 32616 16N

- 30300 Lewiston, ID-WA 32611 11N

438 30340 Lewiston-Auburn, ME 32619 19N

- 30380 Lewistown, PA 32618 18N

- 30420 Lexington, NE 32614 14N

336 30460 Lexington-Fayette, KY 32616 16N

- 30580 Liberal, KS 32614 14N

338 30620 Lima, OH 32616 16N

522 30660 Lincoln, IL 32616 16N

339 30700 Lincoln, NE 32614 14N

340 30780 Little Rock-North Little Rock-Conway, AR 32615 15N

558 30820 Lock Haven, PA 32618 18N

- 30860 Logan, UT-ID 32612 12N

- 30900 Logansport, IN 32616 16N

- 30940 London, KY 32616 16N

- 30980 Longview, TX 32615 15N

440 31020 Longview, WA 32610 10N

106 31060 Los Alamos, NM 32613 13N

348 31080 Los Angeles-Long Beach-Anaheim, CA 32611 11N

350 31140 Louisville-Jefferson County, KY-IN 32616 16N

352 31180 Lubbock, TX 32614 14N

- 31220 Ludington, MI 32616 16N
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- 31260 Lufkin, TX 32615 15N

246 31300 Lumberton, NC 32617 17N

- 31340 Lynchburg, VA 32617 17N

- 31380 Macomb, IL 32615 15N

356 31420 Macon-Bibb County, GA 32617 17N

260 31460 Madera, CA 32611 11N

- 31500 Madison, IN 32616 16N

357 31540 Madison, WI 32616 16N

- 31580 Madisonville, KY 32616 16N

- 31620 Magnolia, AR 32615 15N

- 31660 Malone, NY 32618 18N

284 31680 Malvern, AR 32615 15N

148 31700 Manchester-Nashua, NH 32619 19N

- 31740 Manhattan, KS 32614 14N

- 31820 Manitowoc, WI 32616 16N

359 31860 Mankato, MN 32615 15N

360 31900 Mansfield, OH 32617 17N

425 31930 Marietta, OH 32617 17N

361 31940 Marinette, WI-MI 32616 16N

- 31980 Marion, IN 32616 16N

120 32000 Marion, NC 32617 17N

198 32020 Marion, OH 32617 17N

- 32100 Marquette, MI 32616 16N

- 32140 Marshall, MN 32615 15N

- 32180 Marshall, MO 32615 15N

- 32260 Marshalltown, IA 32615 15N

362 32280 Martin, TN 32616 16N

- 32300 Martinsville, VA 32617 17N

- 32340 Maryville, MO 32615 15N

- 32380 Mason City, IA 32615 15N
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424 32460 Mayfield, KY 32616 16N

178 32500 Maysville, KY 32616 16N

- 32540 McAlester, OK 32615 15N

365 32580 McAllen-Edinburg-Mission, TX 32614 14N

- 32620 McComb, MS 32615 15N

- 32660 McMinnville, TN 32616 16N

- 32700 McPherson, KS 32614 14N

240 32740 Meadville, PA 32617 17N

366 32780 Medford, OR 32610 10N

368 32820 Memphis, TN-MS-AR 32616 16N

232 32860 Menomonie, WI 32615 15N

488 32900 Merced, CA 32610 10N

- 32940 Meridian, MS 32616 16N

190 33020 Mexico, MO 32615 15N

309 33060 Miami, OK 32615 15N

370 33100 Miami-Fort Lauderdale-Pompano Beach, FL 32617 17N

176 33140 Michigan City-La Porte, IN 32616 16N

- 33180 Middlesborough, KY 32617 17N

474 33220 Midland, MI 32617 17N

372 33260 Midland, TX 32613 13N

- 33300 Milledgeville, GA 32617 17N

376 33340 Milwaukee-Waukesha, WI 32616 16N

508 33380 Minden, LA 32615 15N

206 33420 Mineral Wells, TX 32614 14N

378 33460 Minneapolis-St. Paul-Bloomington, MN-WI 32615 15N

- 33500 Minot, ND 32614 14N

- 33540 Missoula, MT 32611 11N

- 33580 Mitchell, SD 32614 14N

190 33620 Moberly, MO 32615 15N

380 33660 Mobile, AL 32616 16N

Continued on next page

275



Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

488 33700 Modesto, CA 32610 10N

384 33740 Monroe, LA 32615 15N

220 33780 Monroe, MI 32617 17N

388 33860 Montgomery, AL 32616 16N

- 33940 Montrose, CO 32613 13N

404 33980 Morehead City, NC 32618 18N

318 34020 Morgan City, LA 32615 15N

390 34060 Morgantown, WV 32617 17N

315 34100 Morristown, TN 32617 17N

446 34140 Moscow, ID 32611 11N

393 34180 Moses Lake, WA 32611 11N

- 34220 Moultrie, GA 32617 17N

- 34260 Mountain Home, AR 32615 15N

147 34300 Mountain Home, ID 32611 11N

268 34340 Mount Airy, NC 32617 17N

170 34350 Mount Gay-Shamrock, WV 32617 17N

394 34380 Mount Pleasant, MI 32616 16N

- 34420 Mount Pleasant, TX 32615 15N

336 34460 Mount Sterling, KY 32616 16N

- 34500 Mount Vernon, IL 32616 16N

198 34540 Mount Vernon, OH 32617 17N

500 34580 Mount Vernon-Anacortes, WA 32610 10N

294 34620 Muncie, IN 32616 16N

- 34660 Murray, KY 32616 16N

209 34700 Muscatine, IA 32615 15N

266 34740 Muskegon, MI 32616 16N

538 34780 Muskogee, OK 32615 15N

396 34820 Myrtle Beach-Conway-North Myrtle Beach, SC-NC 32617 17N

- 34860 Nacogdoches, TX 32615 15N

488 34900 Napa, CA 32610 10N

Continued on next page

276



Table A.1 – Continued from previous page

CBSA
FIPS
Code

CBSA
FIPS
Code

CBSA Name EPSG
Code

UTM
Zone

163 34940 Naples-Marco Island, FL 32617 17N

400 34980 Nashville-Davidson–Murfreesboro–Franklin, TN 32616 16N

- 35020 Natchez, MS-LA 32615 15N

- 35060 Natchitoches, LA 32615 15N

404 35100 New Bern, NC 32618 18N

192 35140 Newberry, SC 32617 17N

294 35220 New Castle, IN 32616 16N

430 35260 New Castle, PA 32617 17N

408 35300 New Haven-Milford, CT 32618 18N

406 35380 New Orleans-Metairie, LA 32615 15N

184 35420 New Philadelphia-Dover, OH 32617 17N

- 35440 Newport, OR 32610 10N

315 35460 Newport, TN 32617 17N

359 35580 New Ulm, MN 32615 15N

408 35620 New York-Newark-Jersey City, NY-NJ-PA 32618 18N

515 35660 Niles, MI 32616 16N

536 35700 Nogales, AZ 32612 12N

- 35740 Norfolk, NE 32614 14N

- 35820 North Platte, NE 32614 14N

412 35840 North Port-Sarasota-Bradenton, FL 32617 17N

294 35860 North Vernon, IN 32616 16N

- 35900 North Wilkesboro, NC 32617 17N

184 35940 Norwalk, OH 32617 17N

278 35980 Norwich-New London, CT 32618 18N

500 36020 Oak Harbor, WA 32610 10N

- 36100 Ocala, FL 32617 17N

428 36140 Ocean City, NJ 32618 18N

372 36220 Odessa, TX 32613 13N

482 36260 Ogden-Clearfield, UT 32612 12N

- 36300 Ogdensburg-Massena, NY 32618 18N
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- 36340 Oil City, PA 32617 17N

- 36380 Okeechobee, FL 32617 17N

416 36420 Oklahoma City, OK 32614 14N

160 36460 Olean, NY 32617 17N

500 36500 Olympia-Lacey-Tumwater, WA 32610 10N

420 36540 Omaha-Council Bluffs, NE-IA 32614 14N

- 36580 Oneonta, NY 32618 18N

147 36620 Ontario, OR-ID 32611 11N

318 36660 Opelousas, LA 32615 15N

192 36700 Orangeburg, SC 32617 17N

422 36740 Orlando-Kissimmee-Sanford, FL 32617 17N

118 36780 Oshkosh-Neenah, WI 32616 16N

218 36820 Oskaloosa, IA 32615 15N

393 36830 Othello, WA 32611 11N

176 36837 Ottawa, IL 32616 16N

312 36840 Ottawa, KS 32615 15N

- 36900 Ottumwa, IA 32615 15N

378 36940 Owatonna, MN 32615 15N

- 36980 Owensboro, KY 32616 16N

- 37060 Oxford, MS 32616 16N

348 37100 Oxnard-Thousand Oaks-Ventura, CA 32611 11N

222 37120 Ozark, AL 32616 16N

424 37140 Paducah, KY-IL 32616 16N

332 37220 Pahrump, NV 32611 11N

300 37260 Palatka, FL 32617 17N

- 37300 Palestine, TX 32615 15N

- 37340 Palm Bay-Melbourne-Titusville, FL 32617 17N

108 37420 Pampa, TX 32614 14N

- 37460 Panama City, FL 32616 16N

308 37500 Paragould, AR 32615 15N
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- 37540 Paris, TN 32616 16N

- 37580 Paris, TX 32615 15N

425 37620 Parkersburg-Vienna, WV 32617 17N

- 37660 Parsons, KS 32615 15N

429 37740 Payson, AZ 32612 12N

484 37770 Pearsall, TX 32614 14N

- 37780 Pecos, TX 32613 13N

218 37800 Pella, IA 32615 15N

426 37860 Pensacola-Ferry Pass-Brent, FL 32616 16N

- 37900 Peoria, IL 32616 16N

316 37940 Peru, IN 32616 16N

428 37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 32618 18N

429 38060 Phoenix-Mesa-Chandler, AZ 32612 12N

406 38100 Picayune, MS 32615 15N

- 38180 Pierre, SD 32614 14N

340 38220 Pine Bluff, AR 32615 15N

246 38240 Pinehurst-Southern Pines, NC 32617 17N

- 38260 Pittsburg, KS 32615 15N

430 38300 Pittsburgh, PA 32617 17N

- 38340 Pittsfield, MA 32618 18N

352 38380 Plainview, TX 32614 14N

- 38420 Platteville, WI 32615 15N

- 38460 Plattsburgh, NY 32618 18N

515 38500 Plymouth, IN 32616 16N

- 38540 Pocatello, ID 32612 12N

170 38580 Point Pleasant, WV-OH 32617 17N

- 38620 Ponca City, OK 32614 14N

145 38700 Pontiac, IL 32616 16N

- 38740 Poplar Bluff, MO 32615 15N

188 38780 Portales, NM 32613 13N

Continued on next page
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- 38820 Port Angeles, WA 32610 10N

438 38860 Portland-South Portland, ME 32619 19N

440 38900 Portland-Vancouver-Hillsboro, OR-WA 32610 10N

544 38920 Port Lavaca, TX 32614 14N

370 38940 Port St. Lucie, FL 32617 17N

170 39020 Portsmouth, OH 32617 17N

- 39060 Pottsville, PA 32618 18N

408 39100 Poughkeepsie-Newburgh-Middletown, NY 32618 18N

- 39150 Prescott Valley-Prescott, AZ 32612 12N

- 39220 Price, UT 32612 12N

140 39260 Prineville, OR 32610 10N

148 39300 Providence-Warwick, RI-MA 32619 19N

482 39340 Provo-Orem, UT 32612 12N

444 39380 Pueblo, CO 32613 13N

446 39420 Pullman, WA 32611 11N

412 39460 Punta Gorda, FL 32617 17N

448 39500 Quincy, IL-MO 32615 15N

376 39540 Racine, WI 32616 16N

450 39580 Raleigh-Cary, NC 32617 17N

452 39660 Rapid City, SD 32613 13N

154 39700 Raymondville, TX 32614 14N

428 39740 Reading, PA 32618 18N

454 39780 Red Bluff, CA 32610 10N

454 39820 Redding, CA 32610 10N

378 39860 Red Wing, MN 32615 15N

456 39900 Reno, NV 32611 11N

292 39940 Rexburg, ID 32612 12N

458 39980 Richmond, IN 32616 16N

- 40060 Richmond, VA 32618 18N

336 40080 Richmond-Berea, KY 32616 16N

Continued on next page
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365 40100 Rio Grande City-Roma, TX 32614 14N

348 40140 Riverside-San Bernardino-Ontario, CA 32611 11N

- 40180 Riverton, WY 32612 12N

- 40220 Roanoke, VA 32617 17N

468 40260 Roanoke Rapids, NC 32618 18N

466 40300 Rochelle, IL 32616 16N

462 40340 Rochester, MN 32615 15N

464 40380 Rochester, NY 32618 18N

466 40420 Rockford, IL 32616 16N

- 40460 Rockingham, NC 32617 17N

204 40530 Rockport, TX 32614 14N

- 40540 Rock Springs, WY 32612 12N

468 40580 Rocky Mount, NC 32618 18N

- 40620 Rolla, MO 32615 15N

122 40660 Rome, GA 32616 16N

- 40700 Roseburg, OR 32610 10N

- 40740 Roswell, NM 32613 13N

- 40760 Ruidoso, NM 32613 13N

- 40780 Russellville, AR 32615 15N

384 40820 Ruston, LA 32615 15N

- 40860 Rutland, VT 32618 18N

472 40900 Sacramento-Roseville-Folsom, CA 32610 10N

- 40940 Safford, AZ 32612 12N

474 40980 Saginaw, MI 32617 17N

378 41060 St. Cloud, MN 32615 15N

- 41100 St. George, UT 32612 12N

312 41140 St. Joseph, MO-KS 32615 15N

476 41180 St. Louis, MO-IL 32615 15N

300 41220 St. Marys, GA 32617 17N

- 41260 St. Marys, PA 32617 17N

Continued on next page
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566 41400 Salem, OH 32617 17N

440 41420 Salem, OR 32610 10N

- 41460 Salina, KS 32614 14N

- 41500 Salinas, CA 32610 10N

480 41540 Salisbury, MD-DE 32618 18N

482 41620 Salt Lake City, UT 32612 12N

- 41660 San Angelo, TX 32614 14N

484 41700 San Antonio-New Braunfels, TX 32614 14N

- 41740 San Diego-Chula Vista-Carlsbad, CA 32611 11N

- 41760 Sandpoint, ID 32611 11N

184 41780 Sandusky, OH 32617 17N

246 41820 Sanford, NC 32617 17N

488 41860 San Francisco-Oakland-Berkeley, CA 32610 10N

488 41940 San Jose-Sunnyvale-Santa Clara, CA 32610 10N

- 42020 San Luis Obispo-Paso Robles, CA 32610 10N

488 42100 Santa Cruz-Watsonville, CA 32610 10N

106 42140 Santa Fe, NM 32613 13N

- 42200 Santa Maria-Santa Barbara, CA 32610 10N

488 42220 Santa Rosa-Petaluma, CA 32610 10N

- 42300 Sault Ste. Marie, MI 32616 16N

496 42340 Savannah, GA 32617 17N

- 42380 Sayre, PA 32618 18N

- 42420 Scottsbluff, NE 32613 13N

497 42460 Scottsboro, AL 32616 16N

350 42500 Scottsburg, IN 32616 16N

- 42540 Scranton–Wilkes-Barre, PA 32618 18N

340 42620 Searcy, AR 32615 15N

500 42660 Seattle-Tacoma-Bellevue, WA 32610 10N

370 42680 Sebastian-Vero Beach, FL 32617 17N

- 42700 Sebring-Avon Park, FL 32617 17N

Continued on next page
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- 42740 Sedalia, MO 32615 15N

146 42780 Selinsgrove, PA 32618 18N

388 42820 Selma, AL 32616 16N

273 42860 Seneca, SC 32617 17N

464 42900 Seneca Falls, NY 32618 18N

315 42940 Sevierville, TN 32617 17N

294 42980 Seymour, IN 32616 16N

267 43020 Shawano, WI 32616 16N

416 43060 Shawnee, OK 32614 14N

- 43100 Sheboygan, WI 32616 16N

172 43140 Shelby, NC 32617 17N

400 43180 Shelbyville, TN 32616 16N

500 43220 Shelton, WA 32610 10N

- 43260 Sheridan, WY 32613 13N

206 43300 Sherman-Denison, TX 32614 14N

- 43320 Show Low, AZ 32612 12N

508 43340 Shreveport-Bossier City, LA 32615 15N

212 43380 Sidney, OH 32616 16N

- 43420 Sierra Vista-Douglas, AZ 32612 12N

164 43460 Sikeston, MO 32616 16N

- 43500 Silver City, NM 32612 12N

- 43580 Sioux City, IA-NE-SD 32614 14N

- 43620 Sioux Falls, SD 32614 14N

- 43660 Snyder, TX 32614 14N

- 43700 Somerset, KY 32616 16N

306 43740 Somerset, PA 32617 17N

- 43760 Sonora, CA 32610 10N

515 43780 South Bend-Mishawaka, IN-MI 32616 16N

273 43900 Spartanburg, SC 32617 17N

452 43940 Spearfish, SD 32613 13N

Continued on next page
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517 43980 Spencer, IA 32615 15N

517 44020 Spirit Lake, IA 32615 15N

518 44060 Spokane-Spokane Valley, WA 32611 11N

522 44100 Springfield, IL 32616 16N

- 44140 Springfield, MA 32618 18N

- 44180 Springfield, MO 32615 15N

212 44220 Springfield, OH 32616 16N

- 44260 Starkville, MS 32616 16N

524 44300 State College, PA 32618 18N

496 44340 Statesboro, GA 32617 17N

277 44420 Staunton, VA 32617 17N

525 44460 Steamboat Springs, CO 32613 13N

- 44500 Stephenville, TX 32614 14N

- 44540 Sterling, CO 32613 13N

221 44580 Sterling, IL 32616 16N

554 44620 Stevens Point, WI 32616 16N

- 44660 Stillwater, OK 32614 14N

488 44700 Stockton, CA 32610 10N

- 44740 Storm Lake, IA 32615 15N

310 44780 Sturgis, MI 32616 16N

- 44860 Sulphur Springs, TX 32615 15N

174 44900 Summerville, GA 32616 16N

- 44940 Sumter, SC 32617 17N

146 44980 Sunbury, PA 32618 18N

- 45000 Susanville, CA 32610 10N

- 45020 Sweetwater, TX 32614 14N

532 45060 Syracuse, NY 32618 18N

- 45140 Tahlequah, OK 32615 15N

142 45180 Talladega-Sylacauga, AL 32616 16N

- 45220 Tallahassee, FL 32616 16N

Continued on next page
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- 45300 Tampa-St. Petersburg-Clearwater, FL 32617 17N

- 45340 Taos, NM 32613 13N

522 45380 Taylorville, IL 32616 16N

- 45460 Terre Haute, IN 32616 16N

- 45500 Texarkana, TX-AR 32615 15N

- 45520 The Dalles, OR 32610 10N

422 45540 The Villages, FL 32617 17N

122 45580 Thomaston, GA 32616 16N

- 45620 Thomasville, GA 32617 17N

534 45660 Tiffin, OH 32617 17N

- 45700 Tifton, GA 32617 17N

122 45740 Toccoa, GA 32616 16N

534 45780 Toledo, OH 32617 17N

- 45820 Topeka, KS 32615 15N

408 45860 Torrington, CT 32618 18N

- 45900 Traverse City, MI 32616 16N

408 45940 Trenton-Princeton, NJ 32618 18N

- 45980 Troy, AL 32616 16N

472 46020 Truckee-Grass Valley, CA 32610 10N

536 46060 Tucson, AZ 32612 12N

- 46100 Tullahoma-Manchester, TN 32616 16N

538 46140 Tulsa, OK 32615 15N

539 46180 Tupelo, MS 32616 16N

- 46220 Tuscaloosa, AL 32616 16N

- 46300 Twin Falls, ID 32611 11N

540 46340 Tyler, TX 32615 15N

- 46380 Ukiah, CA 32610 10N

273 46420 Union, SC 32617 17N

362 46460 Union City, TN 32616 16N

212 46500 Urbana, OH 32616 16N

Continued on next page
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- 46520 Urban Honolulu, HI 32604 4N

- 46540 Utica-Rome, NY 32618 18N

- 46620 Uvalde, TX 32614 14N

- 46660 Valdosta, GA 32617 17N

488 46700 Vallejo, CA 32610 10N

338 46780 Van Wert, OH 32616 16N

- 46820 Vermillion, SD 32614 14N

- 46860 Vernal, UT 32612 12N

- 46900 Vernon, TX 32614 14N

298 46980 Vicksburg, MS 32615 15N

544 47020 Victoria, TX 32614 14N

- 47080 Vidalia, GA 32617 17N

- 47180 Vincennes, IN 32616 16N

428 47220 Vineland-Bridgeton, NJ 32618 18N

- 47240 Vineyard Haven, MA 32619 19N

545 47260 Virginia Beach-Norfolk-Newport News, VA-NC 32618 18N

- 47300 Visalia, CA 32611 11N

- 47340 Wabash, IN 32616 16N

- 47380 Waco, TX 32614 14N

244 47420 Wahpeton, ND-MN 32614 14N

313 47460 Walla Walla, WA 32611 11N

338 47540 Wapakoneta, OH 32616 16N

356 47580 Warner Robins, GA 32617 17N

- 47620 Warren, PA 32617 17N

312 47660 Warrensburg, MO 32615 15N

515 47700 Warsaw, IN 32616 16N

- 47780 Washington, IN 32616 16N

272 47820 Washington, NC 32618 18N

548 47900 Washington-Arlington-Alexandria,
DC-VA-MD-WV 32618 18N

Continued on next page
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198 47920 Washington Court House, OH 32617 17N

- 47940 Waterloo-Cedar Falls, IA 32615 15N

- 47980 Watertown, SD 32614 14N

376 48020 Watertown-Fort Atkinson, WI 32616 16N

- 48060 Watertown-Fort Drum, NY 32618 18N

422 48100 Wauchula, FL 32617 17N

554 48140 Wausau-Weston, WI 32616 16N

- 48180 Waycross, GA 32617 17N

- 48220 Weatherford, OK 32614 14N

430 48260 Weirton-Steubenville, WV-OH 32617 17N

- 48300 Wenatchee, WA 32610 10N

- 48460 West Plains, MO 32615 15N

200 48500 West Point, MS 32616 16N

- 48540 Wheeling, WV-OH 32617 17N

376 48580 Whitewater, WI 32616 16N

556 48620 Wichita, KS 32614 14N

- 48660 Wichita Falls, TX 32614 14N

558 48700 Williamsport, PA 32618 18N

- 48780 Williston, ND 32613 13N

- 48820 Willmar, MN 32615 15N

- 48900 Wilmington, NC 32618 18N

178 48940 Wilmington, OH 32616 16N

468 48980 Wilson, NC 32618 18N

548 49020 Winchester, VA-WV 32618 18N

556 49060 Winfield, KS 32614 14N

- 49080 Winnemucca, NV 32611 11N

- 49100 Winona, MN 32615 15N

268 49180 Winston-Salem, NC 32617 17N

554 49220 Wisconsin Rapids-Marshfield, WI 32616 16N

- 49260 Woodward, OK 32614 14N

Continued on next page
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184 49300 Wooster, OH 32617 17N

148 49340 Worcester, MA-CT 32619 19N

- 49380 Worthington, MN 32615 15N

- 49420 Yakima, WA 32610 10N

- 49460 Yankton, SD 32614 14N

276 49620 York-Hanover, PA 32618 18N

566 49660 Youngstown-Warren-Boardman, OH-PA 32617 17N

472 49700 Yuba City, CA 32610 10N

- 49740 Yuma, AZ 32611 11N

198 49780 Zanesville, OH 32617 17N

- 49820 Zapata, TX 32614 14N
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Appendix B: Data Sources for Characterizing Neighborhoods

This appendix contains technical details on the five sources of data used to char-

acterize neighborhoods as described in Chapter 2: population and housing data from the

Census Bureau’s American Community Survey (ACS) program, jobs data from the Census

Bureau’s Longitudinal Employer-Household Dynamics Origin-Destination Employment

Statistics (LODES) program, land cover data from the US Geological Survey National

Land Cover Database (NLCD), a shapefile of military bases from the Bureau of Trans-

portation Statistics National Transportation Atlas Database (NATD), and road network

shapefiles from the OpenStreetMap (OSM) project.
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Table B.1: Census Table B03002: Hispanic Or Latino Origin By Race

Variable Name
B03002_001 Total Population
B03002_003 Non-Hispanic White Population
B03002_004 Non-Hispanic Black Population
B03002_005 Non-Hispanic Native American and Alaskan Native Population
B03002_006 Non-Hispanic Asian Population
B03002_007 Non-Hispanic Native Hawaiian and Pacific Islander Population
B03002_008 Non-Hispanic Some Other Race Population
B03002_009 Non-Hispanic Two or More Races Population
B03002_012 Hispanic or Latino of Any Race Population

B.1 Census Bureau American Community Survey

To characterize the population and housing stock of the hex cells, I used 2018 five-

year estimate data from theCensus Bureau’sAmericanCommunity Survey, acquired through

the tidycensus library in R. This data was tabulated by census block groups, the small-

est geography for which ACS data is available, which were acquired through the tigris

library in R.

Data was collected from five Census tables B03002 (Hispanic Or Latino Origin By

Race), B08301 (Means Of Transportation To Work), B19013 (Median Household Income

In The Past 12 Months (In 2018 Inflation-Adjusted Dollars)), B25032 (Tenure By Units In

Structure), and B25044 (Tenure By Vehicles Available).

Tables B.1-B.5 on pages 290-293 show the Census data that was imported. For the

purpose of typologizing hex cells, only the data on total population (from table B03002,

variable 001) and on the numbers of housing units of different types (from table B25032,

with owner-occupied and renter-occupied units consolidated) was used. However, addi-

tional data was collected for use in typologizing metropolitan areas based on their land

use distributions. The list of variables included in the 2018 ACS are supplied by the US

Census Bureau (2021b) on variable definitions are from US Census Bureau (2019a).
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Table B.2: Census Table B08301: Means Of Transportation To Work

Variable Name
B08301_001 Total Workers 16 Years and Over
B08301_003 # of Workers Who Drove Alone
B08301_004 # of Workers Who Carpooled
B08301_010 # of Workers Who Rode Public Transportation
B08301_016 # of Workers Who Used Taxicabs
B08301_017 # of Workers Who Rode Motorcycles
B08301_018 # of Workers Who Rode Bicycles
B08301_019 # of Workers Who Walked
B08301_020 # of Workers Who Commuted by Other Means
B08301_021 # of Workers Who Worked at Home

Table B.3: Census Table B19013: Median Household Income In The Past 12 Months
Variable Name

B19013_001
Median Household Income In The Past 12 Months
(In 2018 Inflation-Adjusted Dollars)
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Table B.4: Census Table B25032: Tenure By Units In Structure

Variable Name
B25032_001 Total Occupied Housing Units
B25032_002 Total Owner-Occupied Housing Units
B25032_003 # of Units: Owner-Occupied, 1 Detached Unit in Structure
B25032_004 # of Units: Owner-Occupied, 1 Attached Unit in Structure
B25032_005 # of Units: Owner-Occupied, 2 Units in Structure
B25032_006 # of Units: Owner-Occupied, 3-4 Units in Structure
B25032_007 # of Units: Owner-Occupied, 5-9 Units in Structure
B25032_008 # of Units: Owner-Occupied, 10-19 Units in Structure
B25032_009 # of Units: Owner-Occupied, 20-49 Units in Structure
B25032_010 # of Units: Owner-Occupied, 50 or More Units in Structure
B25032_011 # of Units: Owner-Occupied, Mobile Home
B25032_012 # of Units: Owner-Occupied, Boat, RV, Van, Etc
B25032_013 Total Renter-Occupied Housing Units
B25032_014 # of Units: Renter-Occupied, 1 Detached Unit in Structure
B25032_015 # of Units: Renter-Occupied, 1 Attached Unit in Structure
B25032_016 # of Units: Renter-Occupied, 2 Units in Structure
B25032_017 # of Units: Renter-Occupied, 3-4 Units in Structure
B25032_018 # of Units: Renter-Occupied, 5-9 Units in Structure
B25032_019 # of Units: Renter-Occupied, 10-19 Units in Structure
B25032_020 # of Units: Renter-Occupied, 20-49 Units in Structure
B25032_021 # of Units: Renter-Occupied, 50 or More Units in Structure
B25032_022 # of Units: Renter-Occupied, Mobile Home
B25032_023 # of Units: Renter-Occupied, Boat, RV, Van, Etc
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Table B.5: Census Table B25044: Tenure By Vehicles Available

Variable Name
B25044_001 Total Occupied Housing Units
B25044_002 Total Owner-Occupied Housing Units
B25044_003 # of Units: Owner-Occupied Units with No Vehicles Available
B25044_004 # of Units: Owner-Occupied Units with 1 Vehicles Available
B25044_005 # of Units: Owner-Occupied Units with 2 Vehicles Available
B25044_006 # of Units: Owner-Occupied Units with 3 Vehicles Available
B25044_007 # of Units: Owner-Occupied Units with 4 Vehicles Available
B25044_008 # of Units: Owner-Occupied Units with 5 or More Vehicles Available
B25044_009 Total Renter-Occupied Housing Units
B25044_010 # of Units: Renter-Occupied Units with No Vehicles Available
B25044_011 # of Units: Renter-Occupied Units with 1 Vehicles Available
B25044_012 # of Units: Renter-Occupied Units with 2 Vehicles Available
B25044_013 # of Units: Renter-Occupied Units with 3 Vehicles Available
B25044_014 # of Units: Renter-Occupied Units with 4 Vehicles Available
B25044_015 # of Units: Renter-Occupied Units with 5 or More Vehicles Available
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B.2 Census Bureau LEHD Origin-Destination Employment Statistics

To characterize employment (and thus retail, office, education and medical, and in-

dustrial uses) in the hex cells, I used employment data from version 7.4 of the US Census

Bureau (2019d) LEHD Origin-Destination Employment Statistics dataset, acquired with

the R library lehdr. Since this data is tabulated by Census blocks, acquired with the R

library tigris, I was able to obtain better spatial resolution than was available for the

ACS demographic data.

However, version 7.4 of the LODES data—the most recent available when I began

this project—does not include 2018 data and I had to use jobs data from three different

years:

• Data on federal jobs (excluding military and national-security-related jobs, which

are not reported by LEHD) was last reported for 2015.

• Data on non-federal jobs in South Dakota and Alaska was last reported for 2016.

• For non-federal jobs in the other forty-eight states and the District of Columbia,

2017 data was available.

I used “workplace area characteristics” (i.e. data on jobs located in a given Cen-

sus block, rather than the jobs held by workers living in a given Census block) data for

workforce segment S000—all workers, regardless of age, income, or industry—and job

type JT02—all non-federal jobs—for 2017 (and 2016 in Alaska and South Dakota) and

job type JT04—all federal jobs—for 2015 and summed the federal and non-federal jobs

for each Census block. The job variables downloaded are listed in Table B.6 on page 295.

(US Census Bureau, 2019c)
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Table B.6: LODES Workplace Area Characteristics Data Variables

Variable Type of Jobs
C000 All Jobs
CE01 # of Jobs Earning ≤ $1,250 per Month
CE02 # of Jobs Earning $1,251 per month to $3,333 per month
CE03 # of Jobs Earning > $3,333 per month
CNS01 # of Jobs in NAICS Sector 11 (Agriculture, Forestry, Fishing, Hunting)
CNS02 # of Jobs in NAICS Sector 21 (Mining, Quarrying, and Oil and Gas Extraction)
CNS03 # of Jobs in NAICS Sector 22 (Utilities)
CNS04 # of Jobs in NAICS Sector 23 (Construction)
CNS05 # of Jobs in NAICS Sector 31-33 (Manufacturing)
CNS06 # of Jobs in NAICS Sector 42 (Wholesale Trade)
CNS07 # of Jobs in NAICS Sector 44-45 (Retail Trade)
CNS08 # of Jobs in NAICS Sector 48-49 (Transportation and Warehousing)
CNS09 # of Jobs in NAICS Sector 51 (Information)
CNS10 # of Jobs in NAICS Sector 52 (Finance and Insurance)
CNS11 # of Jobs in NAICS Sector 53 (Real Estate and Rental and Leasing)
CNS12 # of Jobs in NAICS Sector 54 (Professional, Scientific, and Technical Services)
CNS13 # of Jobs in NAICS Sector 55 (Management of Companies and Enterprises)
CNS14 # of Jobs in NAICS Sector 56 (Admin, Support, and Waste Management Services)
CNS15 # of Jobs in NAICS Sector 61 (Educational Services)
CNS16 # of Jobs in NAICS Sector 62 (Health Care and Social Assistance)
CNS17 # of Jobs in NAICS Sector 71 (Arts, Entertainment, and Recreation)
CNS18 # of Jobs in NAICS Sector 72 (Accommodation and Food Services)
CNS19 # of Jobs in NAICS Sector 81 (Other Services except Public Administration)
CNS20 # of Jobs in NAICS Sector 92 (Public Administration)
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Table B.7: LODES Industry Groupings Used to Characterize Neighborhoods

Industry NAICS Codes Included
Retail 44-45, 71, 72, 81
Education/Medical 61, 62
Office 51, 52, 53, 54, 55, 56, 91
Industrial 11, 21, 22, 23, 31-33, 42, 48-49

While using federal and non-federal jobs from different years, and using non-federal

jobs from a different year for two states, does potentially introduce error, the date range

for the data used here is relatively small, and I think that the benefits of being able to

include all jobs and all CBSAs in the US with the most recent data available outweigh the

downsides of using data from different years.

Although job data by income level was collected for potential use in typologizing

metro areas, for the characterization of neighborhoods discussed in 2, jobs were classi-

fied into four industry groupings based on North American Industry Classification System

(NAICS) codes: retail, education/medical (eds/meds), office, and industrial, as shown in

Table B.7 on page 296.

It is, however, worth noting several issues with the LODES workplace location data.

For one thing, since the data is collected from a number of sources, including employer

reporting of workplace locations, there are a number of mis-located jobs, apparently due

to large employers reporting all of their employees as working at a single address even

when their workplaces are actually spread over a large location.

Government employers are commonly guilty of this—for example, Fairfax County

Public Schools in Virginia reports all of the school system’s employees as working at

the school system headquarters rather than at the schools where most of them are actu-

ally employed—though some private employers, especially temp agencies, do it as well.

However, because public school systems are among the largest employers in many areas,

fictitious concentrations of education jobs are particularly common.
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A separate issue relates to the relatively broad sets of jobs included in the two-digit

NAICS codes that LODES data is indexed by. Not all jobs included in a two-digit NAICS

code necessarily fall into the same job type as the industry grouping I’ve assigned the job

type to. For example, a large fraction of the jobs in downtown Houston are in NAICS

Sector 21 (Mining, Quarrying, and Oil and Gas Extraction). However, these are obviously

not industrial-type jobs on oil rigs or in oil refineries: they are in fact jobs in the head-

quarters of major petrochemical companies that should be classified as office jobs for the

purposes of this project. However, because most concentrations of NAICS Sector 21 jobs

are industrial facilities, these jobs are classified as “industrial” in characterizing the hex

cells containing downtown Houston.

Finally, it is important to note that active-duty military and national-security-related

Federal jobs are excluded from the LODES datasets, which means that military bases and

other DOD facilities, as well as offices of intelligence agencies, do not show up in the data.

This limitation of the data necessitated the decision to exclude neighborhoods located on

military bases from analysis, and may also complicate comparisons with the Washington-

Arlington-Alexandria, DC-VA-MD-WV metropolitan area.
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B.3 USGS and NOAA Land Cover Data

Remote-sensing-based land cover raster data from theUSGeological Survey (USGS)

and National Oceanic and Atmospheric Administration (NOAA) was used to distinguish

between developed and undeveloped land at a higher resolution than US Census Bureau

data allowed. In this document, land cover raster data is referred to as National Land Cover

Database data throughout this document. However, three separate sources were used for

this data:

• For the contiguous US (CONUS), the most recent data was available: a raster of

NLCD data from 2016. (US Geologic Survey, 2020) Details of the creation of this

dataset have been published by Yang et al. (2018) and Homer et al. (2015).

• For Alaska, a 2011 raster of NLCD data was used, as more recent data was unavail-

able. (US Geologic Survey, 2020)

• For Hawaii, 2005 NOAA raster was used. (US Geologic Survey, 2020)

Despite the different sources of the data, all land cover raster data consisted of 30-

m square pixels. Furthermore, all three data sources used equivalent metrics for defining

“developed” land. Pixels with 20%ormore coverage by artificial impervious surfaceswere

classified as “developed”. Pixels with less than 20% coverage by artificial impervious

surfaces were classified as “undeveloped open space,” which I treated as equivalent to

undeveloped land for the purposes of my calculations.

However, the 11-year difference in vintage between the data used for Hawaii and

that used for the contiguous US may present issues with the comparability of my analysis

of Hawaiian CBSAs to those in CONUS. In addition, since my other data on Hawaiian

CBSAs is more recent, I have some concern about the applicability of 2005 land-cover

data.

298



B.4 Military Base Shapefile from NTAD

The shapefile Military_Bases.shp was downloaded from the National Trans-

portation Atlas Database NTADmaintained by the US Bureau of Transportation Statistics

(2019). The version used in this project was last updated on 21 May 2019. The data

description is as follows:

The Military Bases dataset is as of May 21, 2019, and is part of the U.S.

Department of Transportation (USDOT)/Bureau of Transportation Statistics’s

(BTS’s) National Transportation Atlas Database (NTAD). The dataset depicts

the authoritative boundaries of the most commonly known Department of

Defense (DoD) sites, installations, ranges, and training areas in the United

States and Territories. These sites encompass land which is federally owned

or otherwise managed. This dataset was created from source data provided

by the four Military Service Component headquarters and was compiled by

the Defense Installation Spatial Data Infrastructure (DISDI) Program within

the Office of the Deputy Under Secretary of Defense for Installations and En-

vironment, Business Enterprise Integration Directorate. Sites were selected

from the 2010 Base Structure Report (BSR), a summary of the DoD Real

Property Inventory. This list does not necessarily represent a comprehensive

collection of all Department of Defense facilities, and only those in the fifty

United States and US Territories were considered for inclusion. For inven-

tory purposes, installations are comprised of sites, where a site is defined as

a specific geographic location of federally owned or managed land and is as-

signed to military installation. DoD installations are commonly referred to

as a base, camp, post, station, yard, center, homeport facility for any ship, or

other activity under the jurisdiction, custody, control of the DoD. (US Bureau

of Transportation Statistics, 2019)
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This dataset was used to identify land that was part of military bases: this land

was excluded from further analysis, since military and Department of Defense jobs are

excluded from the jobs data used in the analysis, and since military bases are relatively

sui generis and are not really an urban land use, particularly in the post-9/11 world, where

they are generally not open to the general public.
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B.5 OpenStreetMap Road Shapefiles

OpenStreetMap datawas downloaded from theGeofabrikwebsite (GeofabrikGmbH,

2020) on 11 March 2020. This data is organized by state (with northern and southern Cal-

ifornia separated) and contains layers named gis_osm_roads_free_1.shp for each state

that consist of what OpenStreetMap Foundation (2021a) refers to as its “highways” fea-

tures: actually all roads and pedestrian paths. This model of the road network appears to

be more complete than the data provided by the Census Bureau—some comments in the

talk pages of the OSM wiki suggest that it is in fact based on the roads data provided by

the Census Bureau, which would make sense—and certainly includes more details on road

types that can be used to identify what is and is not pedestrian-friendly.

TheOSM roads datawas used to calculatewalksheds—and thus percent ideal walksheds—

for each hex cell, as well as to calculate the number of dead-ends, three-way intersections,

and four-or-more-way intersections in each hex cell. Before these calculations were per-

formed, evidently non-walkable roads were removed based on the values of the fclass

variable that describes the “type” of roadway (OpenStreetMap Foundation (2021b); Open-

StreetMap Foundation (2021c); and OpenStreetMap Foundation (2021d)). Removing

roads based on the presence or absence of tags indicating sidewalks, or based on a maxi-

mum speed limit (given in the maxspeed variable), was considered but determined to be

non-viable to to the incompleteness of this data.

Most of the listed road types potentially allow for pedestrians; the four road types

that were removed from walkshed calculations are shown in Table B.8 on page 302. Roads

with these pedestrian-unfriendly fclass values were excluded from the street networks

used to count intersections as well. In addition, roads with the fclass value servicewere

removed because they generally consisted of lanes in parking lots, as well as driveways in

rural areas, and were not generally consistently included in the dataset.
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Table B.8: OSM Highway fclass Tags Excluded from Walkshed Analysis

Tag Description
motorway Limited access freeway with interchanges.

motorway_link Access ramps for motorways.
trunk Limited access highway with occasional grade level intersections.

trunk_link Access ramps for trunks.

Table B.9: OSM Highway fclass Tags Excluded from Intersection Analysis

Tag Description
motorway Limited access freeway with interchanges.

motorway_link Access ramps for motorways.
trunk Limited access highway with occasional grade level intersections.

trunk_link Access ramps for trunks.
service Driveways and parking lots.
footway Sidewalks and some pedestrian paths.
steps Steps found within footway paths.

Likewise, “roads” with fclass values of footway or stepswere removed because

these fclass values were usually used to identify sidewalks. Including sidewalks as well

as the roads themselves would produce multiple closely-spaced spurious intersections at

each actual intersection. Furthermore, since sidewalks are not consistently included for

all neighborhoods in the OSM highways data, including them would introduce a false

distinction between neighborhoods based on the completeness of their data. Table B.9 on

page 302 shows the full set of OSM highway tags excluded from the street networks used

to calculate intersection densities.
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Appendix C: Methodology and Scripts for CharacterizingNeighborhoods

The most computationally intensive part of this project is the process, discussed in

Sections 2.3 and 2.5, of defining and characterizing neighborhoods in metropolitan areas

using the data sources detailed in Appendix B.

This appendix discusses the R scripts1—run under R version 3.6.2—and technical

details of the processes used to characterize the neighborhoods and produce the hex-final-

shapefiles of characterized hex cells used to typologize neighborhoods and metropolitan

areas. It is divided into six sections, each consisting of a prose description of the proce-

dures used by a set of R scripts:

• Section C.1: Generating and Cropping Hex Grids

• Section C.2: Processing NLCD Data

• Section C.3: Processing Census Data

• Section C.4: Extracting Data to Hex Cells

• Section C.5: Processing Roads Data

• Section C.6: Initial Analysis of the Hex Cells

1The source code for these R scripts can be found online in UMBC’s ScholarWorks repository.
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C.1 Generating and Cropping Hex Grids

The initial process of generating and cropping the hex cells involved three R scripts.

First, the script HexGrids-1-GenerateHex.R is used to generate grids of hex cells for

each CBSA. Then, the script Census-1-DownloadWater.R is used to download water

features for each CBSA. Finally, the script is used HexGrids-2-CropWater.R to remove

the water features from the hex grids.

The script HexGrids-1-GenerateHex.R generates blank hexagonal grids in the

appropriate UTM projection for each CBSA in the US. The hexagons generated have side

lengths and radius (center to vertices) of 400 m. All hexagons for a given UTM zone are

generated in one batch so that they line up between bounding CBSAs and CBSAs in the

same CSA in particular. However, hexagons that are split by a CBSA boundary are divided

into two partial hexagons, one for each CBSA.

Hexagon grids for each CBSA were saved with the prefix hex-blank- and indi-

vidual hexagons within a given hex grid were given ID numbers in the field HEXID. The

first action performed on these hex grids after they were saved was the removal of water

features, which required that water feature objects be downloaded from the Census.

The first in a series of scripts to downloadCensus data, Census-1-DownloadWater.R,

uses the tigris library to download water area features (by county) for each of the coun-

ties in each CBSA, remove water features with areas of less than 100,000 m2, and, merge

all water features within a given CBSA together to simplify future calculations. The re-

sulting objects were saved with the filename prefix Census-water-.

Then, to remove water features, the script HexGrids-2-CropWater.R loads blank

hex grids and Census water features and produces hex grids with the water features re-

moved. Depending on the area of a hex after water is removed, one of three things is

done:
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1. If the land area of the hex with water removed is 15% or less of the area of a complete

hex, the hex is deleted on the assumption that it is too small for statistics on it to be

done usefully, and to save space and calculation time.

2. If the land area of the hex with water removed is 85% or more of the area of a

complete hex, the non-water-removed hex is used, since the water features are too

small to make a significant impact in the nature of the hex. This also saves calcu-

lation time and space (since it eliminates an irregularly-shaped hex) and takes into

account the fact that small water features are not consistently recorded by the Census

for counties: some counties seem to have small ponds and such included and others

do not, even when they have similar geography (Prince George’s and Anne Arundel

Counties on opposite sides of the Patuxent, for example).

3. If the land area of the hex with water removed is between 15% and 85% of the area

of a complete hex, the water-removed hex is used.

In cases 2 and 3, the land area of the hex in m2 is recorded in the variable AREA_m. The

resulting water-removed hexes are saved with the filename prefix hex-dry-.
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C.2 Processing NLCD Data

The script NLCDB-1-ReclassifyPixelCounting.R imports downloaded rasters

for the contiguous US (CONUS), Alaska, and Hawaii and crops them to produce separate

rasters for each CBSA in the US. These rasters are kept in the same CRS projections as

the original downloaded rasters, to avoid the difficulties involved in reprojecting rasters.

However, their pixel values are reclassified to have a value of 1 for all undeveloped land

(including water and developed open space) and a value of 4 for low-, medium-, and high-

intensity developed land. The output rasters have the filename prefix NLCDB-raster- and

are intended for use in counting the number of developed and undeveloped pixels in each

hexagon.

In the process of extracting ACS and LEHD Census data from the geometries in

which they are tabulated (block groups and blocks, respectively) and assigning it to hex

cells, the Census geometries are cropped to remove undeveloped land as identified in the

NLCD land cover raster data. In order to do this, it is first necessary to create “masking”

vectors of undeveloped land from the land cover raster data. This requires a series of four

scripts:

• NLCDB-2-ReclassifyMasking.R to crop NLCD data to the rectangular bounding

box of each CBSA, reclassify the pixels as developed or undeveloped, and reduce

the resolution of the rasters.

• NLCDB-3-GeneratePolygonizeNLCDB.R to generate a DOS batch script to convert

the raster to polygons.

• NLCDB-4-PolygonizeNLCDB.bat to use thegdal_polygonize.batGDALpython

script to convert the NLCDB rasters to vectors.

• NLCDB-5-MakeMaskingPolygons.R (pg. to remove developed land from the vec-

tors, transform them to the correct UTM zones, and crop them to CBSA boundaries.
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The NLCDB-2-ReclassifyMasking.R reclassification script is very similar to the

script—NLCDB-1-PixelCounting.R— used to prepare NLCD vectors for the counting

of the percentage of developed land in each hex. However, it also uses the aggregate

function to convert the rasters from 30-m square pixels to 180-m square pixels. These

output rasters are also saved with the filename prefix NLCDB-raster-, but in a different

directory than the rasters produced by the NLCDB-1-PixelCounting.R script.

The larger pixels are needed to make the subsequent vectorization and vector sub-

traction stepsmore computationally tractable. However, as 180-m square pixels are counted

as developed if any of the 36 original pixels in them are classified as developed, this also

helps to ensure that only large, contiguous tracts of developed land are removed from the

Census geometries.

The next step is to convert the rasters output by NLCDB-2-ReclassifyMasking.R

into vectors. Unfortunately, the raster package’s script to do this is incredibly slow and

not really practical to use, so I decided to instead use the gdal_polygonize.bat GDAL

python script to do this step. The script can’t be called directly from R because it needs to

run in the OSGEO4W shell. It is important to note that whenever QGIS is upgraded, it is

necessary to reinstall GDAL’s command line tools, which are not included in the default

QGIS install, and which are lost whenever QGIS is upgraded.

The R script NLCDB-3-GeneratePolygonizeNLCDB.R serves to generate the sim-

ple DOS batch file NLCDB-4-PolygonizeNLCDB.bat, which polygonizes every CBSA

raster, taking inputs with the prefix NLCDB-raster and producing outputs with the prefix

NLCDB-vector-.

Finally, the script NLCDB-5-MakeMaskingPolygons.R imports these vector files,

removes developed land from them, transforms them to the appropriate UTM zone, fixes

validity errors caused by the transformation by setting their geometry precision to 1 m

with the st_set_precision function and using the st_make_valid function from the
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lwgeom package to remove validity errors, crops them to the boundaries of their CBSA,

and merges all undeveloped area into a single feature to simplify future processing. The

output vector objects have the prefix NLCDB-merged-vector-.

C.3 Processing Census Data

The R script Census-2-DownloadACS.R loops through each county in each CBSA

and uses the tidycensus package to download ACS data by block group with associ-

ated geometries. The resulting sf objects are combined with the rbind command, trans-

formed to the appropriate UTM coordinate system, and have the water features stored in

the Census-water- files from Section 2.1 subtracted out. Note that, since not all CBSAs

have non-zero water area, it is necessary to test whether the dimension of the water object

is zero before subtracting it.

The ACS data is simplified by removing variables for margins of error and combin-

ing some related variables into single values. The resulting variables are given somewhat

gnomic names to fit within the constraints for variable names set by the ESRI Shapefile

format, as seen in Table C.1.

One of the trickier parts of this script is the final export to shapefiles: subtracting

water features from block groups occasionally creates “linestring” features when a residue

of a polygon is left with only two vertices. Because these features, although allowed in

sf geometries, can’t be saved in ESRI Shapefiles of polygons, it was necessary to write a

small loop to delete any linestring features. Once this process is completed, the geometries

are saved with the filename prefix Census-ACS-.

The R scripts Census-3-DownloadLEHD.R and Census-4-ProcessLEHD.R down-

load LEHD data using the lehdr package. However, the process by which they do this

is somewhat convoluted and non-ideal, both due to practical constraints and the fact that

the Census-4-ProcessLEHD.R performs some steps that should have been performed by

Census-3-DownloadLEHD.R but which were omitted in error.
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Table C.1: Variables Created by Census-2-DownloadACS.R

Variable Definition
PP_tot Total Population
PP_wht Non-Hispanic White Population
PP_blk Non-Hispanic Black Population
PP_ltn Hispanic or Latino of Any Race Population
PP_asn Non-Hispanic Asian Population
PP_oth Non-Hispanic Other or Multiple Race Population
WK_tot Total Working Population
WK_trnst Workers Who Commute by Transit
WK_car Workers Who Commute by Car or Motorcycle
WK_carpl Workers Who Commute by Carpool
WK_activ Workers Who Commute by Bicycle or Walking
WK_other Workers WhoWork at Home, Commute by Taxi, or Commute by Other Means
INC_MED Median Household Income
HU_htot Total Number of Occupied Housing Units
HU_h1d Number of One-Unit Detached Housing Units
HU_h1a Number of One-Unit Attached Housing Units
HU_h2 Number of Housing Units in Two-Unit Buildings
HU_h34 Number of Housing Units in Three- and Four- Unit Buildings
HU_h59 Number of Housing Units in Five- to Nine- Unit Buildings
HU_h1019 Number of Housing Units in 10- to 19- Unit Buildings
HU_h2049 Number of Housing Units in 20- to 49- Unit Buildings
HU_h50 Number of Housing Units in Buildings of 50 or More Units
HU_hmobl Number of Housing Units in Mobile Homes, Vehicles, and Vessels
HU_vtot Total Number of Occupied Housing Units
HU_b0 Number of Occupied Housing Units with No Vehicles Available
HU_v1 Number of Occupied Housing Units with One Vehicle Available
HU_v2 Number of Occupied Housing Units with Two Vehicles Available
HU_v3 Number of Occupied Housing Units with Three or More Vehicles Available
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Downloading LEHD data is complicated by my decision to use Census blocks for

this data. Since LEHD is tabulated by blocks, this choice provides the highest possible

resolution for the locations of jobs. However, because blocks are the smallest—and most

numerous—Census geography, using them leads to difficulties in handling the data.

In particular, the lehdr and tigris R packages download LEHD data and Census

block geometries by entire states. Given the large size of the block shapefiles and the

constraints of using a residential internet connection to download the data because of the

coronavirus pandemic, it was important to avoid having to download the data for any state

more than once.

To solve this problem, the Census-3-DownloadLEHD.R script downloads LEHD

data and block shapefiles by state and saves them as state shapefiles with filenames of

the form LEHD-blocks-[State FIPS Code].shp rather than CBSA shapefiles. All blocks

not in any CBSA or with no LEHD jobs data are removed before shapefiles are saved.

However, water features are not removed, because the water shapefiles are organized by

CBSA and the LEHD data was handled at the state level by this script.

Because in writing the Census-3-DownloadLEHD.R script, I forgot to acquire jobs

by income as well as jobs by two-digit NAICS Code, the Census-4-ProcessLEHD.R

script begins by acquiring this data and adding it to the data stored in the state Census

block shapefiles. Since all blocks with jobs are included in those files, the removed blocks

should not pose an issue.

The resulting Census blocks with data are then grouped by CBSA, Federal (from

2015) and non-Federal (from 2017 and 2016 as described in Section 1.5) jobs are com-

bined, and water features are removed. Linestrings produced by this cropping procedure

are removed as in Census-2-DownloadACS.R and the output is saved in CBSA shape-

files with the prefix Census-LEHD-. The data variables added in these files are listed in

Table C.2 on page 311
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Table C.2: Variables Created by Census-4-ProcessLEHD.R

Variable Type of Jobs
job_tt Total Jobs
job_linc Earnings $1,250/month or less
job_minc Earnings $1,251/month to $3,333/month
job_hinc Earnings greater than $3,333/month
job_11 NAICS Sector 11 (Agriculture, Forestry, Fishing, Hunting)
job_21 NAICS Sector 21 (Mining, Quarrying, and Oil and Gas Extraction)
job_22 NAICS Sector 22 (Utilities)
job_23 NAICS Sector 23 (Construction)
job_313 NAICS Sector 31-33 (Manufacturing)
job_42 NAICS Sector 42 (Wholesale Trade)
job_445 NAICS Sector 44-45 (Retail Trade)
job_489 NAICS Sector 48-49 (Transportation and Warehousing)
job_51 NAICS Sector 51 (Information)
job_52 NAICS Sector 52 (Finance and Insurance)
job_53 NAICS Sector 53 (Real Estate and Rental and Leasing)
job_54 NAICS Sector 54 (Professional, Scientific, and Technical Services)
job_55 NAICS Sector 55 (Management of Companies and Enterprises)
job_56 NAICS Sector 56 (Admin, Support, and Waste Management Services)
job_61 NAICS Sector 61 (Educational Services)
job_62 NAICS Sector 62 (Health Care and Social Assistance)
job_71 NAICS Sector 71 (Arts, Entertainment, and Recreation)
job_72 NAICS Sector 72 (Accommodation and Food Services)
job_81 NAICS Sector 81 (Other Services except Pub. Administration)
job_92 NAICS Sector 92 (Public Administration)
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The scripts described above create shapefiles of ACS and LEHD data in geometries

with water areas removed in shapefiles with the prefixes Census-ACS- and Census-LEHD-

respectively. Before the data in these shapefiles can be extracted into hex cells, the ge-

ographies need to be clipped to remove the undeveloped land stored in shapefiles with the

prefix NLCDB-masking-vector-. Unfortunately, this subtraction is a very computation-

ally complex procedure and it took several weeks to perform this cropping for all of the

shapefiles.

The cropping procedure, initially performed by Census-5-CropCensusData.R,

is—in theory—very simple. The three imported shapefiles for each CBSA were first

validity-corrected by setting their geometry precision to 1 m with the st_set_precision

function and using the st_make_valid function from the lwgeom package to remove va-

lidity errors. The st_difference function is then used to subtract the undeveloped land

masking objects from the ACS and LEHD geometries.

However, this cropping process introduces features with “linestring” geometries,

which cannot be saved to ESRI Shapefiles with polygon geometries. As a result, a loop

similar to the ones needed to removed linestrings produced when cropping out water

features is used to eliminate these linestrings. The resulting geometries are saved with

the same two prefixes—Census-ACS- and Census-LEHD-—but in directories of clipped

rather than unclipped data.

For most CBSAs, Census-5-CropCensusData.R produced the expected cropped

ACS and LEHD geometries. However, it fails for some CBSAs due to issues with the

validity of imported shapefiles and the presence of linestrings in exported shapefiles. The

R script Census-6-CropCensusData-Careful.R was written to allow these CBSAs to

be handled on a case-by-case basis, with the addition of the st_snap command to the

initial validity correction. In some cases, it was also necessary to do linestring-removal

by hand when the loops failed to do so: I don’t fully understand this procedure and haven’t

figured out how to automate it completely.
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Unfortunately, well after data processing was complete, an investigation of anoma-

lies in the variables in used to characterize the hex cells discovered an additional problem

with the cropping process. It turns out that in some rare cases, using st_make_valid on

a polygon feature will yield a non-polygon, “geometry collection” feature containing both

polygon and linestring components. Cropping geometry collection features yields unpre-

dictable results and in some cases results in a Census geometry being reduced to a tiny

residual feature.

These residual features pose a particular problem because they are sufficiently small

that they will almost necessarily fall within a single hex cell, producing a single hex

cell that appears to have an absurdly high population density. Unfortunately, by the time

this issue was discovered, there was not time to redo the data processing with additional

linestring-removal steps. However, twenty-seven such hexes were identified in the final

neighborhood characterization data andwere removed from the dataset by hand: it is hoped

that the effect of this will be small enough to not unduly skew the overall results.
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C.4 Extracting Data to Hex Cells

The script HexGrids-3-ExtractNLCDB.R is used to extract the fraction of pixels in

the NLCD rasters in each hex cell with values of 4, indicating developed land. The heart

of this script is the use of the velox package (recently removed from the CRAN package

repository) to count the number of developed and undeveloped pixels within the bounds

of each hex cell. I turned to the velox package once it became clear that the extract

function in the standard raster library performed the task unacceptably slowly.

I have to admit that I don’t really understand the syntax for the velox package, but

I was able to get it to extract a list consisting of a vector of pixel values (1 for undevel-

oped land and 4 for developed land) for each hex cell. The resulting hex grid objects are

saved with the filename prefix hex-developed-. The variables containing the NCLD

data were given somewhat gnomic names to take into account the restrictions on variable

name length for ESRI Shapefiles:

1. DEVEL_ct is an integer variable counting the number of developed 30-m by 30-m

pixels are included in the hex cell.

2. UNDEV_ct is an integer variable counting the number of undeveloped 30-m by 30-m

pixels are included in the hex cell.

3. DEVEL_fr is a real variable containing the fraction of pixels in the hex cell that are

developed.

4. UNDEV_b is a Boolean variable, TRUE if the hex cell contains no developed pixels

and FALSE otherwise.

The process of incorporating data on which hex cells are located on military bases

and in Census Urban Areas is relatively simple, and actually only requires a single script,

HexGrids-4-ExtractMilUrb.R.
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This script imports the hex-developed- hex cell shapefiles produced by the script

HexGrids-3-ExtractNLCDB.R , along with the Military_Bases.shp shapefile of mil-

itary bases from the US Department of Transportation and the tl_2019_us_uac10.shp

shapefile of Urban Areas from the US Census Bureau.

For each CBSA, the Military_Bases.shp and tl_2019_us_uac10.shp sf ob-

jects are transformed to the local UTM coordinate system and the centroids of all hexes

are determined. Three new variables are then calculated for each hex:

1. UACE is an integer variable, set to 0 for hexes whose centroids are not located within

the bounds of any Urban Area and to the FIPS code of the Urban Area for hexes

whose centroids are located in one.

2. URBAN_b is a Boolean variable, set to TRUE for hexes whose centroids are located

within the bounds of an Urban Area and FALSE otherwise.

3. MILITARY_b is a Boolean variable, set to TRUE for hexes whose centroids are located

within the bounds of a military base and FALSE otherwise.

Two shapefiles are then exported to disk, both containing the new variables and all

variables included in the original hex-developed- shapefile. The hex cells are saved with

the prefix hex-milurb- and the centroids are saved with the prefix points-milurb-.

The final step in the process of handling Census data—actually extracting the data

from the cropped ACS and LEHD geometries into hex cells—is performed by the script

HexGrids-5-ExtractCensus.R. This script begins by importing the ACS and LEHD

data as well as the hex grids and centroids with filename prefixes hex-developed- and

points-milurb- and performing the now-routine precision-setting and validity-checking

of the polygon objects.

The function aw_interpolate from the package areal is used for area-weighted

integration instead of the st_interpolate_aw function from sf because it is faster and

simpler to use. Median household income data was converted to be extensive by multiply-
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ing the value for each block group by the number of households in that block group before

interpolation: this is important because area-weighted interpolation of extensive popu-

lation variables is equivalent to population-weighted interpolation, while area-weighted

interpolation of intensive population variables is not.

After the interpolation steps were complete the script replaces NA values with zeros,

divides by number of housing units to recover median household income as a variable, and

drops hex cells that have no population, no jobs, and no developed land. The variables are

renamed as described in Tables C.3-C.6 on pages 317-319 and the resulting hex cells and

centroids are written with filename prefixes hex-census- and points-census-, respec-

tively.

Tables C.3 and C.4 indicate, along with the variable name, whether it is a string

variable, an integer variable, or a real/floating point variable. Since the ESRI Shapefile

standard does not allow for Boolean values, Boolean variables are stored as integers with

1 for TRUE and 0 for FALSE.

Tables C.5 and C.6 do not give variable type because all variables listed in these

tables are real/floating point values. (Because of interpolation, even counts of numbers of

people and housing units will generally be non-integer values.) These variables generally

have the same values as given in Tables C.1 and C.2, but the names have been standard-

ized and—in some cases—lengthened for greater readability while remaining within the

constraints of the ESRI Shapefile format.
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Table C.3: Cell ID Variables Created by HexGrids-5-ExtractCensus.R

Variable Type Definition
CSAFP STRING FIPS of Combined Statistical Area; 0 if none
CBSAFP STRING FIPS/GEOID of Core-Based Statistical Area
UACE STRING FIPS of Urban Area; 0 if none
GEOID STRING FIPS/GEOID of Core-Based Statistical Area
NAME STRING Name of Core-Based Statistical Area
UTMZONE STRING UTM Zone Assigned to Core-Based Statistical Area
EPSG INTEGER EPSG code associated with UTM Zone
HEXID INTEGER ID number for hex; unique within CBSA

Table C.4: Basic Descriptive Variables Created by HexGrids-5-ExtractCensus.R

Variable Type Definition
AREA_m REAL/FLOAT Land area of hex in m2

AREA_mi REAL/FLOAT Land area of hex in mi2

DEVEL_ct INTEGER Number of developed pixels in the hex
UNDEVEL_ct INTEGER Number of undeveloped pixels in the hex
DEVEL_fr REAL/FLOAT Fraction of pixels in the hex that are developed
URBAN_b INTEGER 1 if hex is in a Census Urban Area; 1 otherwise
MILITARY_b INTEGER 1 if hex is in an military base; 1 otherwise
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Table C.5: ACS Variables Created by HexGrids-5-ExtractCensus.R

Variable Definition
POP_total Total Population
POP_white Non-Hispanic White Population
POP_black Non-Hispanic Black Population
POP_latin Hispanic or Latino of Any Race Population
POP_asian Non-Hispanic Asian Population
POP_other Non-Hispanic Other or Multiple Race Population
WK_total Total Working Population
WK_transit Workers Who Commute by Transit
WK_car Workers Who Commute by Car or Motorcycle
WK_carpool Workers Who Commute by Carpool
WK_active Workers Who Commute by Bicycle or Walking
WK_other Workers Who Work at Home or Commute by Taxi or Other Means
INC_MED Median Household Income
HU_htot Total Number of Occupied Housing Units
HU_h1d Number of One-Unit Detached Housing Units
HU_h1a Number of One-Unit Attached Housing Units
HU_h2 Number of Housing Units in 2-Unit Buildings
HU_h34 Number of Housing Units in 3- and 4- Unit Buildings
HU_h59 Number of Housing Units in 5- to 9- Unit Buildings
HU_h1019 Number of Housing Units in 10- to 19- Unit Buildings
HU_h2049 Number of Housing Units in 20- to 49- Unit Buildings
HU_h50 Number of Housing Units in Buildings of 50 or More Units
HU_hmobl Number of Housing Units in Mobile Homes, Vehicles, and Vessels
HU_vtot Total Number of Occupied Housing Units
HU_b0 Number of Occupied Housing Units with No Vehicles Available
HU_v1 Number of Occupied Housing Units with 1 Vehicle Available
HU_v2 Number of Occupied Housing Units with 2 Vehicles Available
HU_v3 Number of Occupied Housing Units with 3 or More Vehicles Available
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Table C.6: LEHD Variables Created by HexGrids-5-ExtractCensus.R

Variable Type of Jobs
JOBS_total Total Jobs
JOBS_linc Earnings $1,250/month or less
JOBS_minc Earnings $1,251/month to $3,333/month
JOBS_hinc Earnings greater than $3,333/month
JOBS_11 NAICS Sector 11 (Agriculture, Forestry, Fishing, Hunting)
JOBS_21 NAICS Sector 21 (Mining, Quarrying, and Oil and Gas Extraction)
JOBS_22 NAICS Sector 22 (Utilities)
JOBS_23 NAICS Sector 23 (Construction)
JOBS_313 NAICS Sector 31-33 (Manufacturing)
JOBS_42 NAICS Sector 42 (Wholesale Trade)
JOBS_4445 NAICS Sector 44-45 (Retail Trade)
JOBS_4849 NAICS Sector 48-49 (Transportation and Warehousing)
JOBS_51 NAICS Sector 51 (Information)
JOBS_52 NAICS Sector 52 (Finance and Insurance)
JOBS_53 NAICS Sector 53 (Real Estate and Rental and Leasing)
JOBS_54 NAICS Sector 54 (Professional, Scientific, and Technical Services)
JOBS_55 NAICS Sector 55 (Management of Companies and Enterprises)
JOBS_56 NAICS Sector 56 (Admin, Support, and Waste Management Services)
JOBS_61 NAICS Sector 61 (Educational Services)
JOBS_62 NAICS Sector 62 (Health Care and Social Assistance)
JOBS_71 NAICS Sector 71 (Arts, Entertainment, and Recreation)
JOBS_72 NAICS Sector 72 (Accommodation and Food Services)
JOBS_81 NAICS Sector 81 (Other Services except Pub. Administration)
JOBS_92 NAICS Sector 92 (Public Administration)
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C.5 Processing Roads Data

The R script Roads-1-ExtractRoads.R extracts CBSA-level street networks from

the state-level street network files, removes all roads with the fclass variable values

motorway, motorway_link, trunk, and, trunk_link (which indicate roads that gen-

erally do not allow pedestrians), and saves them to disk with filenames with the prefix

streets-.

The process of extracting street networks for individual CBSAs is complicated by the

fact that many CBSAs cross state lines, and the set of all state street network shapefiles is

too large to load into memory on the computers I used to domy calculations. To get around

this, a number of groups of one or several states were loaded to memory and cropped to

the boundaries of those CBSAs located entirely in a given group.

Nine states2 were treated individually, as no CBSAs cross their state borders. No

CBSAs cross the borders of California, either, but since the California road network was

provided as two shapefiles (for northern and southern California), it was treated as a group

of states.

The Roads-1-ExtractRoads.R script begins by defining a vector for the states

to be treated as distinct and vectors for the states in each state group. It then imports

a shapefile of all CBSAs in the US in which I added a variable, RoadZone, to indicate

which state cluster each CBSA should be extracted from. Separate sf objects are created

for the CBSAs in each state cluster, and a vector is created of the RoadZone values for

CBSAs in the nine states that are treated as distinct.

With this done, the remainder of the script is very repetitive: it consists of a loop

through the nine states treated as distinct, followed by nearly-identical code repeated a

dozen or so times to process each of the state clusters. The general procedure for each of

these processing steps is as follows:
2Alaska, Arizona, Colorado, Florida, Hawaii, Maine, Montana, New Mexico, and Nevada
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1. A loop is used to load and combine with rbind the state road network shapefiles

needed for the state cluster.

2. All roads with one of the four fclass values associated with non-pedestrian roads

are removed.

3. A loop processes each CBSA separately.

(a) The loop begins by transforming the road network and CBSA boundaries to

the appropriate UTM zone.

(b) The road network is cropped to the boundaries of the CBSA.

(c) A code block based on the st_collection_extract function is used to re-

move any features that, as a result of cropping, now have point geometries, as

these cannot be written to an ESRI shapefile of linestring features.

(d) The st_dimension command is used to remove any features with empty ge-

ometries.

(e) Finally, the resulting roads object is written to disk.

The walkshed analysis was conducted with a combination of 700-m walking paths

on the road network and a 100-m buffer around these paths to produce 800-m walksheds.

The use of a buffer takes into account that many buildings and destinations are not located

exactly on the street grid, but require walking on driveways and through parking lots. This

is the approach used in my City Observatory article (Rowlands, 2020) on percent ideal

walksheds.

To produce and calculated the areas of these walksheds required two scripts and the

use of the “service area analysis” tool in QGIS. The first script, Roads-2-MergeRoads.R,

loops over each CBSA, loading the unmerged roads networks produced by the script
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Roads-1-ExtractRoads.R and the hex centroids produced alongside the Census-extracted

hex cells. It then unions the road network to produce a single merged road network and

immediately saves this to disk with the prefix streets-merged-.

The script then shifts the locations of the centroids to the nearest points on the

merged road network. Centroids that have been shifted by more than 400 m are dropped,

since such a large shift would take them outside of their hex cell. These hex cells evidently

do not contain any roads, and so it is reasonable to regard them as “non-urban” and to ex-

clude them from our analysis. The remaining centroids are saved in the Merged CBSA

Street Networks directory with the prefix centroids-offset-.

As I haven’t been able to find any packages for determining walksheds in R, the

next step—actually deriving walksheds—was done with the “service area analysis” tool

in QGIS. Using the offset centroids and the merged street networks, and with a 10-m error

margin for discontinuities in the street networks, 700-m walksheds were calculated for

each centroid and were saved with the prefix walkshed-lines-.

Finally, the script Roads-3-ProcessWalksheds.R processes the walkshed lines to

calculate percent ideal walkshed values. It begins by loading the centroids produced by

the previous script and the walkshed lines produced by QGIS. Because a bug in the current

version of QGIS scrambles the data tables for geometries while retaining their order, the

script immediately transfers the geometries of the walkshed lines to the centroids data

frames, ensuring that each walkshed is associated with the correct information.

The geometries are repaired with st_make_valid and st_set_precision and

100-m buffers are created around the newwalkshed lines objects to produce buffered walk-

sheds that roughly correspond to the areas reachable within a half-mile walk of the cen-

troids. The areas of these buffers are then calculated and divided by the area of a 800-m

radius circle to calculate fractional ideal walksheds and the walkshed buffers are saved to

disk with the prefix walkshed-buffers- and the fractional ideal walksheds added.
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The script Roads-4-CountNodes.R handles the process of counting intersections

in the street network, and also produces the final hex cells with all data included. It does

this by looping through all 926 CBSAs.

First, the unmerged street network for a CBSA is loaded, duplicate roads with the

same osm_id value are removed—these seem to be present along the edges of many

CBSA road networks, and lead to invalid four-way intersections at every node in the du-

plicated roads—along with roads with fclass values of footway, steps, or service.

The st_cast function is also used to dis-aggregate any multiline strings.

Next, because the completion time for the process used to analyze the street networks

is roughly exponential in the size of the street network, a bounding box for the roads object

is created and divided into a ten-by-ten grid covering the CBSA. A foreach loop is then

used to loop in parallel over each of the one hundred grid elements.

For each grid element, the street network is cropped with a 20-m buffer beyond the

boundaries of the grid element on each side. This buffer is used to make sure that the

dead-ends produced by the crop will not be included in the grid element itself. Then, if

the number of roads in the grid cell is at least two—the analysis will fail for an empty

street network or one with only one road—the grid cell’s road network is converted to an

sp object and then, using readshpnw from the shp2graph library, into a graph object.

A list of nodes with their degrees is extracted from this graph object and two-way

intersections—nodes within a road that are not actually intersections or dead-ends—are

removed. The list of nodes is then converted to an sf points object and cropped to the

actual boundaries of the grid cell, before being appended to the CBSA-wide point object

created by the loop.

After the CBSA-wide point object of nodes is created, the Census-extracted hex grid

for the CBSA and the buffered walkshed for the CBSA are loaded. The walkshed data

from the buffered walkshed is joined to the hex grid and st_contains is used to count
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the numbers of dead-ends, three-way intersections, and four-or-more-way intersections in

each hex. The nodes point object is then written to disk with nodes- as a prefix and the

hex grid is written to disk with final-hex- as a prefix.

C.6 Initial Analysis of the Hex Cells

Finally, the script FirstAnalysis-1-MakeCSV.R reorganizes the variables, elimi-

nating several that are no longer needed (for example, area in square meters), and outputs

the entire national dataset into a single CSV file and a single ESRI Shapefile for easier

processing. The variables included in the resulting national dataset are given in Table 2.1

on page 102.

The script FirstAnalysis-2-AnalyzeCSV.R then reorganizes the variables into a

smaller set, combining related variables to produce more practical characterization vari-

ables, given in Table 2.2 on page 104.

The script then classifies hexes by activity density, percent ideal walkshed, land use

type, and activity type, and removes 27 hexes that were determined to be invalid due to the

Census data cropping error discussed in Section C.3. Finally, it generates summary tables

of the numbers and fractions of hexes, residents, and jobs in each type nationally and by

metro area.
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Appendix D: Neighborhood Density and Connectivity Maps and Tables

This appendix contains tables showing breakdowns of the percentage of neighbor-

hoods at different activity density and percent ideal walkshed levels—and the numbers

and percentages of metro area population and jobs in those neighborhoods—in the twenty

largest metropolitan statistical areas in the US, along with ten additional metropolitan sta-

tistical areas that were selected because they are particularly interesting: either that they

are unusually dense for their size or have rapid transit or light rail.

Also included are maps of activity density and connectivity (measured as % ideal

walksheds) of neighborhoods in the same metro areas. All the maps are at the same scale,

and show a 40-mile by 40-mile square, which means that outlying parts of larger metro

areas may be left out, while views of smaller metro areas may include areas outside the

MSA limits. Neighborhoods with percent ideal walksheds greater than 55% are classified

as “high connectivity,” those with percent ideal walksheds between 55% and 35% are

classified as “medium connectivity,” and those with percent ideal walksheds of less than

35% are classified as “low connectivity.”
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Table D.1: Atlanta Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 9 0.03% 8,000 0.14% 152,000 6.3%

40,000 – 80,000 25 0.08% 31,000 0.5% 187,000 7.8%

20,000 – 40,000 52 0.2% 49,000 0.9% 175,000 7.3%

10,000 – 20,000 293 0.9% 251,000 4.4% 362,000 15.1%

5,000 – 10,000 1,358 4.3% 832,000 14.6% 616,000 25.7%

2,500 – 5,000 4,262 13.5% 1,808,000 31.8% 544,000 22.7%

< 2,500 25,590 81.0% 2,714,000 47.7% 359,000 15.0%

Table D.2: Atlanta Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 44 0.14% 43,000 0.8% 95,000 4.0%

55% – 65% 390 1.2% 216,000 3.8% 254,000 10.6%

45% – 55% 1,357 4.3% 552,000 9.7% 457,000 19.1%

35% – 45% 3,691 11.7% 1,037,000 18.2% 478,000 20.0%

25% – 35% 8,658 27.4% 1,527,000 26.8% 524,000 21.9%

15% – 25% 13,047 41.3% 1,708,000 30.0% 444,000 18.5%

< 15% 4,402 13.9% 609,000 10.7% 142,000 5.9%
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Figure D.1: Atlanta-Sandy Springs-Alpharetta, GA MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Table D.3: Austin Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 2 0.02% 2,000 0.14% 40,000 4.8%

40,000 – 80,000 4 0.04% 9,000 0.4% 25,000 3.0%

20,000 – 40,000 25 0.3% 28,000 1.4% 76,000 9.1%

10,000 – 20,000 214 2.2% 22,5000 11.1% 219,000 26.2%

5,000 – 10,000 745 7.6% 57,0000 28.2% 230,000 27.5%

2,500 – 5,000 1,184 12.1% 54,0000 26.7% 138,000 16.5%

< 2,500 7,649 77.9% 64,8000 32.1% 107,000 12.9%

Table D.4: Austin Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 33 0.3% 28,000 1.4% 57,000 6.8%

55% – 65% 235 2.4% 187,000 9.2% 111,000 13.2%

45% – 55% 610 6.2% 370,000 18.3% 170,000 20.4%

35% – 45% 1,268 12.9% 453,000 22.4% 177,000 21.2%

25% – 35% 2,681 27.3% 479,000 23.7% 151,000 18.1%

15% – 25% 3,806 38.7% 401,000 19.8% 108,000 13.0%

< 15% 1,190 12.1% 103,000 5.1% 61,000 7.4%
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Figure D.2: Austin-Round Rock-Georgetown, TX MSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.5: Baltimore Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 3 0.03% 4,000 0.2% 56,000 4.8%

40,000 – 80,000 13 0.1% 25,000 0.9% 62,000 5.3%

20,000 – 40,000 60 0.6% 124,000 4.5% 122,000 10.5%

10,000 – 20,000 375 3.6% 517,000 18.8% 253,000 21.9%

5,000 – 10,000 1,037 9.9% 788,000 28.7% 336,000 29.1%

2,500 – 5,000 1,440 13.8% 626,000 22.8% 189,000 16.4%

< 2,500 7,525 72.0% 663,000 24.1% 138,000 12.0%

Table D.6: Baltimore Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 84 0.8% 161,000 5.9% 83,000 7.2%

55% – 65% 307 2.9% 366,000 13.3% 188,000 16.3%

45% – 55% 649 6.2% 427,000 15.5% 192,000 16.6%

35% – 45% 1,498 14.3% 534,000 19.4% 239,000 20.7%

25% – 35% 3,004 28.7% 619,000 22.5% 216,000 18.7%

15% – 25% 3,712 35.5% 483,000 17.6% 174,000 15.1%

< 15% 1,199 11.5% 158,000 5.7% 62,000 5.4%
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Figure D.3: Baltimore-Columbia-Towson, MD MSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.7: Boston Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 22 0.12% 82,000 1.7% 409,000 16.9%

40,000 – 80,000 40 0.2% 161,000 3.4% 162,000 6.7%

20,000 – 40,000 260 1.4% 708,000 14.8% 342,000 14.1%

10,000 – 20,000 574 3.1% 780,000 16.3% 412,000 17.0%

5,000 – 10,000 1,152 6.2% 743,000 15.5% 461,000 19.1%

2,500 – 5,000 2,044 11.0% 773,000 16.1% 322,000 13.3%

< 2,500 14,445 77.9% 1,539,000 32.2% 310,000 12.8%

Table D.8: Boston Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 115 0.6% 304,000 6.4% 321,000 13.3%

55% – 65% 595 3.2% 907,000 18.9% 450,000 18.6%

45% – 55% 1,304 7.0% 842,000 17.6% 399,000 16.5%

35% – 45% 2,929 15.8% 859,000 17.9% 420,000 17.4%

25% – 35% 5,518 29.8% 937,000 19.6% 428,000 17.7%

15% – 25% 6,336 34.2% 739,000 15.4% 290,000 12.0%

< 15% 1,740 9.4% 198,000 4.1% 110,000 4.6%
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Figure D.4: Boston-Cambridge-Newton, MA-NHMSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.

333



Table D.9: Charlotte Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 2 0.01% 3,000 0.11% 53,000 5.0%

40,000 – 80,000 2 0.01% 1,000 0.04% 16,000 1.5%

20,000 – 40,000 16 0.09% 13,000 0.5% 52,000 4.9%

10,000 – 20,000 97 0.5% 61,000 2.5% 138,000 12.9%

5,000 – 10,000 547 3.0% 302,000 12.5% 275,000 25.8%

2,500 – 5,000 1,867 10.3% 734,000 30.2% 300,000 28.1%

< 2,500 15,607 86.0% 1,313,000 54.1% 233,000 21.8%

Table D.10: Charlotte Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 32 0.2% 17,000 0.7% 51,000 4.8%

55% – 65% 236 1.3% 106,000 4.4% 111,000 10.4%

45% – 55% 701 3.9% 251,000 10.3% 156,000 14.6%

35% – 45% 1,787 9.9% 432,000 17.8% 198,000 18.5%

25% – 35% 4,992 27.5% 679,000 28.0% 266,000 24.9%

15% – 25% 7,756 42.8% 707,000 29.1% 208,000 19.5%

< 15% 2,634 14.5% 235,000 9.7% 78,000 7.3%
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Figure D.5: Charlotte-Concord-Gastonia, NC-SC MSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.11: Chicago Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 20 0.07% 97,000 1.0% 586,000 14.3%

40,000 – 80,000 47 0.2% 229,000 2.4% 167,000 4.1%

20,000 – 40,000 413 1.6% 1,205,000 12.8% 529,000 12.9%

10,000 – 20,000 1,171 4.5% 1,696,000 18.0% 838,000 20.4%

5,000 – 10,000 3,347 12.8% 2,590,000 27.4% 1,080,000 26.4%

2,500 – 5,000 4,340 16.7% 1,924,000 20.4% 568,000 13.9%

< 2,500 16,728 64.2% 1,704,000 18.0% 331,000 8.1%

Table D.12: Chicago Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 694 2.7% 1,481,000 15.7% 675,000 16.5%

55% – 65% 1,964 7.5% 2,266,000 24.0% 865,000 21.1%

45% – 55% 2,610 10.0% 1,658,000 17.6% 678,000 16.5%

35% – 45% 3,941 15.1% 1,525,000 16.1% 734,000 17.9%

25% – 35% 6,364 24.4% 1,318,000 14.0% 620,000 15.1%

15% – 25% 8,558 32.8% 953,000 10.1% 402,000 9.8%

< 15% 1,935 7.4% 244,000 2.6% 124,000 3.0%
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Figure D.6: Chicago-Naperville-Elgin, IL-IN-WI MSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.13: Cleveland Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 5 0.05% 2,000 0.13% 92,000 10.0%

40,000 – 80,000 1 0.01% 1,000 0.04% 11,000 1.2%

20,000 – 40,000 15 0.2% 16,000 0.8% 35,000 3.8%

10,000 – 20,000 148 1.6% 174,000 8.5% 127,000 13.8%

5,000 – 10,000 869 9.3% 652,000 31.9% 289,000 31.6%

2,500 – 5,000 1,454 15.5% 584,000 28.6% 215,000 23.5%

< 2,500 6,885 73.4% 612,000 30.0% 147,000 16.1%

Table D.14: Cleveland Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 48 0.5% 49,000 2.4% 60,000 6.6%

55% – 65% 364 3.9% 327,000 16.0% 139,000 15.1%

45% – 55% 658 7.0% 393,000 19.3% 149,000 16.3%

35% – 45% 1,231 13.1% 412,000 20.2% 200,000 21.9%

25% – 35% 2,467 26.3% 411,000 20.1% 174,000 19.0%

15% – 25% 3,744 39.9% 360,000 17.6% 146,000 15.9%

< 15% 865 9.2% 88,000 4.3% 49,000 5.3%

338



Figure D.7: Cleveland-Elyria, OH MSA activity-connectivity neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table D.15: Dallas Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 8 0.03% 7,000 0.1% 124,000 3.9%

40,000 – 80,000 27 0.1% 21,000 0.3% 206,000 6.5%

20,000 – 40,000 130 0.5% 171,000 2.4% 381,000 12.0%

10,000 – 20,000 694 2.6% 702,000 9.9% 738,000 23.3%

5,000 – 10,000 3,376 12.5% 2,715,000 38.4% 950,000 30.0%

2,500 – 5,000 4,092 15.1% 1,908,000 27.0% 463,000 14.6%

< 2,500 18,781 69.3% 1,537,000 21.8% 308,000 9.7%

Table D.16: Dallas Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 237 0.9% 236,000 3.3% 233,000 7.3%

55% – 65% 1,558 5.7% 1,141,000 16.2% 632,000 19.9%

45% – 55% 2,672 9.9% 1,648,000 23.3% 803,000 25.3%

35% – 45% 3,817 14.1% 1,518,000 21.5% 657,000 20.7%

25% – 35% 6,546 24.1% 1,316,000 18.6% 463,000 14.6%

15% – 25% 9,522 35.1% 959,000 13.6% 286,000 9.0%

< 15% 2,756 10.2% 243,000 3.4% 97,000 3.1%
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Figure D.8: Dallas-Fort Worth-Arlington, TX MSA activity-connectivity
neighborhoodmap. DowntownDallas is at the lower right and downtown Fort
Worth is at the far lower left. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table D.17: Denver Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 3 0.04% 6,000 0.2% 67,000 5.2%

40,000 – 80,000 8 0.10% 18,000 0.6% 52,000 4.0%

20,000 – 40,000 68 0.9% 90,000 3.2% 206,000 15.8%

10,000 – 20,000 390 4.9% 466,000 16.5% 325,000 25.0%

5,000 – 10,000 1,523 19.3% 1,271,000 45.1% 414,000 31.9%

2,500 – 5,000 1,185 10.5% 552,000 19.6% 144,000 11.1%

< 2,500 4,719 59.8% 417,000 14.8% 91,000 7.0%

Table D.18: Denver Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 228 2.9% 294,000 10.4% 222,000 17.1%

55% – 65% 675 8.5% 586,000 20.8% 276,000 21.2%

45% – 55% 972 12.3% 651,000 23.1% 250,000 19.2%

35% – 45% 1,189 15.1% 559,000 19.8% 248,000 19.1%

25% – 35% 1,782 22.6% 416,000 14.7% 176,000 13.5%

15% – 25% 2,388 30.2% 247,000 8.8% 93,000 7.2%

< 15% 662 8.4% 67,000 2.4% 33,000 2.6%
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Figure D.9: Denver-Aurora-Lakewood, COMSA activity-connectivity neigh-
borhood map. Boulder (not in the Denver MSA) is at the upper left. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table D.19: Detroit Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 4 0.02% 4,000 0.06% 61,000 3.4%

40,000 – 80,000 6 0.03% 2,000 0.09% 48,000 2.7%

20,000 – 40,000 56 0.3% 40,000 0.9% 189,000 10.6%

10,000 – 20,000 274 1.6% 257,000 6.0% 294,000 16.4%

5,000 – 10,000 2,081 11.9% 1,598,000 37.4% 615,000 34.3%

2,500 – 5,000 3,017 17.2% 1,317,000 30.8% 396,000 22.1%

< 2,500 12,113 69.0% 1,056,000 24.7% 191,000 10.7%

Table D.20: Detroit Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 393 2.2% 374,000 8.7% 136,000 7.6%

55% – 65% 1,116 6.4% 867,000 20.3% 276,000 15.4%

45% – 55% 1,447 8.2% 744,000 17.4% 359,000 20.0%

35% – 45% 2,207 12.6% 730,000 17.1% 378,000 21.1%

25% – 35% 4,476 25.5% 802,000 18.8% 331,000 18.4%

15% – 25% 6,423 36.6% 598,000 14.0% 248,000 13.8%

< 15% 1,489 8.5% 161,000 3.8% 66,000 3.7%
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Figure D.10: Detroit-Warren-Dearborn, MIMSA activity-connectivity neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table D.21: Honolulu Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 4 0.3% 9,000 1.0% 62,000 17.1%

40,000 – 80,000 20 1.3% 79,000 8.9% 73,000 20.3%

20,000 – 40,000 46 2.9% 114,000 12.8% 71,000 19.5%

10,000 – 20,000 148 9.4% 242,000 27.2% 73,000 20.2%

5,000 – 10,000 269 17.1% 237,000 26.7% 45,000 12.5%

2,500 – 5,000 287 18.3% 124,000 14.0% 25,000 6.9%

< 2,500 796 50.7% 85,000 9.5% 13,000 3.6%

Table D.22: Honolulu Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 8 0.5% 26,000 3.0% 11,000 3.0%

55% – 65% 32 2.0% 77,000 8.6% 105,000 29.0%

45% – 55% 92 5.9% 141,000 15.9% 67,000 18.4%

35% – 45% 160 10.2% 191,000 21.4% 74,000 20.3%

25% – 35% 334 21.3% 200,000 22.4% 50,000 13.7%

15% – 25% 690 43.9% 198,000 22.2% 45,000 12.4%

< 15% 254 16.2% 58,000 6.5% 11,000 3.1%
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Figure D.11: Urban Honolulu, HI MSA activity-connectivity neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.

347



Table D.23: Houston Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 7 0.03% 4,000 0.06% 156,000 6.0%

40,000 – 80,000 20 0.08% 32,000 0.5% 130,000 5.0%

20,000 – 40,000 138 0.6% 220,000 3.3% 335,000 12.9%

10,000 – 20,000 624 2.6% 751,000 11.2% 568,000 21.8%

5,000 – 10,000 2,760 11.7% 2,307,000 34.5% 712,000 27.4%

2,500 – 5,000 3,960 16.8% 1,851,000 27.7% 427,000 16.4%

< 2,500 16,064 68.1% 1,518,000 22.7% 277,000 10.6%

Table D.24: Houston Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 157 0.7% 156,000 2.3% 190,000 7.3%

55% – 65% 892 3.8% 745,000 11.2% 380,000 14.6%

45% – 55% 1,948 8.3% 1,252,000 18.7% 531,000 20.4%

35% – 45% 3,389 14.4% 1,500,000 22.4% 528,000 20.3%

25% – 35% 6,027 25.6% 1,484,000 22.2% 470,000 18.1%

15% – 25% 8,423 35.7% 1,190,000 17.8% 346,000 13.3%

< 15% 2,737 11.6% 356,000 5.3% 158,000 6.1%
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Figure D.12: Houston-The Woodlands-Sugar Land, TX MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table D.25: Los Angeles Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 24 0.2% 73,000 0.6% 411,000 7.3%

40,000 – 80,000 120 0.8% 393,000 3.0% 585,000 10.4%

20,000 – 40,000 1,017 7.2% 2,844,000 21.5% 1,328,000 23.7%

10,000 – 20,000 3,447 24.3% 5,444,000 41.1% 2,110,000 37.7%

5,000 – 10,000 3,273 23.1% 3,001,000 22.7% 883,000 15.8%

2,500 – 5,000 2,010 14.2% 964,000 7.3% 195,000 3.5%

< 2,500 4,277 30.2% 512,000 3.9% 87,000 1.6%

Table D.26: Los Angeles Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 552 3.9% 1,340,000 10.1% 674,000 12.0%

55% – 65% 2,165 15.3% 3,989,000 30.1% 1,378,000 24.6%

45% – 55% 2,354 16.6% 3,009,000 22.7% 1,319,000 23.6%

35% – 45% 2,316 16.3% 2,065,000 15.6% 1,003,000 17.9%

25% – 35% 2,734 19.3% 1,606,000 12.1% 785,000 14.0%

15% – 25% 3,094 21.8% 990,000 7.5% 346,000 6.2%

< 15% 953 6.7% 234,000 1.8% 92,000 1.6%
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Figure D.13: Los Angeles-Long Beach-Anaheim, CA MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table D.27: Miami Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 4 0.04% 16,000 0.3% 37,000 1.6%

40,000 – 80,000 34 0.3% 63,000 1.0% 144,000 6.3%

20,000 – 40,000 217 2.2% 495,000 8.2% 312,000 13.6%

10,000 – 20,000 1,214 12.4% 1,655,000 27.3% 781,000 34.0%

5,000 – 10,000 2,904 29.7% 2,526,000 41.7% 719,000 31.3%

2,500 – 5,000 1,884 19.3% 871,000 14.4% 207,000 9.0%

< 2,500 3,522 36.0% 425,000 7.0% 95,000 4.1%

Table D.28: Miami Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 178 1.8% 294,000 4.9% 113,000 4.9%

55% – 65% 972 9.9% 1,136,000 18.8% 447,000 19.5%

45% – 55% 1,356 13.9% 1,156,000 19.1% 533,000 23.2%

35% – 45% 1,910 19.5% 1,241,000 20.5% 500,000 21.8%

25% – 35% 2,184 22.3% 1,101,000 18.2% 368,000 16.0%

15% – 25% 2,546 26.0% 892,000 14.7% 262,000 11.4%

< 15% 633 6.5% 231,000 3.8% 72,000 3.1%
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Figure D.14: Miami-Fort Lauderdale-Pompano Beach, FL MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table D.29: Minneapolis Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 7 0.03% 13,000 0.4% 136,000 8.0%

40,000 – 80,000 12 0.06% 24,000 0.7% 60,000 3.6%

20,000 – 40,000 69 0.4% 98,000 2.8% 185,000 11.0%

10,000 – 20,000 314 1.6% 330,000 9.6% 323,000 19.1%

5,000 – 10,000 1,175 6.1% 793,000 23.1% 480,000 28.4%

2,500 – 5,000 2,564 13.3% 1,075,000 31.3% 315,000 18.6%

< 2,500 15,160 78.5% 1,100,000 32.0% 189,000 11.2%

Table D.30: Minneapolis Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 208 1.1% 282,000 8.2% 202,000 12.0%

55% – 65% 669 3.5% 519,000 15.1% 256,000 15.2%

45% – 55% 1,357 7.0% 621,000 18.1% 320,000 19.0%

35% – 45% 2,362 12.2% 686,000 20.0% 319,000 18.9%

25% – 35% 5,489 28.4% 709,000 20.6% 346,000 20.5%

15% – 25% 7,530 39.0% 503,000 14.6% 178,000 10.5%

< 15% 1,686 8.7% 114,000 3.3% 68,000 4.1%
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Figure D.15: Minneapolis-St. Paul-Bloomington, MN-WI MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table D.31: New York Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 228 0.7% 2,816,000 14.6% 2,782,000 34.6%

40,000 – 80,000 502 1.6% 3,560,000 18.5% 794,000 9.9%

20,000 – 40,000 850 2.7% 2,764,000 14.4% 804,000 10.0%

10,000 – 20,000 1,901 6.0% 2,782,000 14.4% 1,273,000 15.9%

5,000 – 10,000 3,922 12.4% 3,026,000 15.7% 1,254,000 15.6%

2,500 – 5,000 5,334 16.9% 2,264,000 11.8% 687,000 8.5%

< 2,500 18,780 59.6% 2,046,000 10.6% 438,000 5.4%

Table D.32: New York Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 794 2.5% 4,652,000 24.2% 2,533,000 31.5%

55% – 65% 2,026 6.4% 4,858,000 25.2% 1,639,000 20.4%

45% – 55% 3,132 9.9% 3,110,000 16.1% 1,012,000 12.6%

35% – 45% 5,030 16.0% 2,567,000 13.3% 1,040,000 13.0%

25% – 35% 7,988 25.3% 2,099,000 10.9% 907,000 11.3%

15% – 25% 9,535 30.3% 1,446,000 7.5% 662,000 8.2%

< 15% 3,012 9.6% 527,000 2.7% 240,000 3.0%
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Figure D.16: New York-Newark-Jersey City, NY-NJ-PA MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table D.33: Philadelphia Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 11 0.05% 42,000 0.7% 253,000 9.8%

40,000 – 80,000 26 0.13% 118,000 2.0% 88,000 3.4%

20,000 – 40,000 263 1.3% 853,000 14.2% 260,000 10.1%

10,000 – 20,000 627 3.1% 894,000 14.9% 472,000 18.3%

5,000 – 10,000 1,837 9.2% 1,267,000 21.1% 712,000 27.6%

2,500 – 5,000 3,249 16.3% 1,331,000 22.1% 481,000 18.6%

< 2,500 13,957 69.9% 1,508,000 25.1% 317,000 12.3%

Table D.34: Philadelphia Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 281 1.4% 847,000 14.1% 384,000 14.9%

55% – 65% 700 3.5% 880,000 14.6% 266,000 10.3%

45% – 55% 1,585 7.9% 957,000 15.9% 429,000 16.6%

35% – 45% 3,193 16.0% 1,078,000 17.9% 511,000 19.8%

25% – 35% 5,738 28.7% 1,123,000 18.7% 478,000 18.5%

15% – 25% 6,535 32.7% 866,000 14.4% 370,000 14.3%

< 15% 1,938 9.7% 262,000 4.4% 144,000 5.6%
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Figure D.17: Philadelphia-Camden-Wilmington, PA-NJ-DE-MD MSA
activity-connectivity neighborhood map. Philadelphia is just right of center
and Wilmington is at the lower left. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table D.35: Phoenix Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 2 0.02% 1,000 0.03% 32,000 1.8%

40,000 – 80,000 15 0.11% 10,000 0.2% 116,000 6.4%

20,000 – 40,000 69 0.5% 60,000 1.3% 223,000 12.3%

10,000 – 20,000 625 4.8% 764,000 16.6% 529,000 29.2%

5,000 – 10,000 2,184 16.7% 1,841,000 39.9% 552,000 30.5%

2,500 – 5,000 2,271 17.4% 1,118,000 24.2% 224,000 12.4%

< 2,500 7,895 60.4% 823,000 17.8% 134,000 7.4%

Table D.36: Phoenix Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 93 0.7% 79,000 1.7% 83,000 4.6%

55% – 65% 971 7.4% 851,000 18.4% 415,000 22.9%

45% – 55% 1,782 13.6% 1,135,000 24.6% 455,000 25.1%

35% – 45% 2,551 19.5% 1,105,000 23.9% 412,000 22.8%

25% – 35% 3,166 24.2% 823,000 17.8% 250,000 13.8%

15% – 25% 3,604 27.6% 513,000 11.1% 151,000 8.3%

< 15% 894 6.8% 111,000 2.4% 46,000 2.5%
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Figure D.18: Phoenix-Mesa-Chandler, AZ MSA activity-connectivity neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table D.37: Pittsburgh Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 5 0.03% 8,000 0.4% 105,000 10.0%

40,000 – 80,000 8 0.05% 17,000 0.8% 42,000 4.0%

20,000 – 40,000 19 0.1% 26,000 1.1% 46,000 4.4%

10,000 – 20,000 155 0.9% 160,000 7.1% 153,000 14.7%

5,000 – 10,000 656 3.8% 441,000 19.4% 250,000 23.9%

2,500 – 5,000 1,379 8.0% 536,000 23.6% 211,000 20.2%

< 2,500 15,092 87.2% 1,083,000 47.7% 239,000 22.8%

Table D.38: Pittsburgh Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 33 0.2% 47,000 2.1% 113,000 10.8%

55% – 65% 211 1.2% 205,000 9.0% 117,000 11.2%

45% – 55% 528 3.0% 283,000 12.5% 137,000 13.1%

35% – 45% 1,332 7.7% 387,000 17.0% 169,000 16.2%

25% – 35% 4,415 25.5% 535,000 23.5% 232,000 22.2%

15% – 25% 8,580 49.6% 631,000 27.8% 200,000 19.1%

< 15% 2,215 12.8% 183,000 8.1% 77,000 7.4%
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Figure D.19: Pittsburgh, PA MSA activity-connectivity neighborhood map.
The area shown is a 40-mile by 40-mile square. Roads and water features by
Stamen Design used under Creative Commons CC BY 3.0 license.
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Table D.39: Portland Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 4 0.04% 7,000 0.3% 65,000 6.3%

40,000 – 80,000 9 0.09% 21,000 0.9% 50,000 4.8%

20,000 – 40,000 39 0.4% 46,000 1.9% 105,000 10.1%

10,000 – 20,000 336 3.4% 390,000 16.4% 292,000 28.3%

5,000 – 10,000 1,163 11.9% 978,000 41.2% 312,000 30.1%

2,500 – 5,000 1,035 10.6% 480,000 20.2% 125,000 12.1%

< 2,500 7,206 73.6% 452,000 19.0% 86,000 8.3%

Table D.40: Portland Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 141 1.4% 200,000 8.4% 175,000 16.9%

55% – 65% 431 4.4% 406,000 17.1% 200,000 19.4%

45% – 55% 738 7.5% 519,000 21.8% 185,000 17.9%

35% – 45% 1,288 13.2% 513,000 21.6% 214,000 20.7%

25% – 35% 2,497 25.5% 376,000 15.8% 141,000 13.7%

15% – 25% 3,694 37.7% 287,000 12.1% 96,000 9.3%

< 15% 1,003 10.2% 74,000 3.1% 21,000 2.1%
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Figure D.20: Portland-Vancouver-Hillsboro, OR-WA MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Table D.41: Riverside Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 0 0% 0 0% 0 0%

40,000 – 80,000 1 0.01% 1,000 0.02% 11,000 0.9%

20,000 – 40,000 20 0.14% 23,000 0.5% 54,000 4.5%

10,000 – 20,000 508 3.6% 699,000 15.8% 308,000 25.6%

5,000 – 10,000 1,867 13.2% 1,628,000 36.8% 447,000 37.1%

2,500 – 5,000 2,381 16.8% 1,111,000 25.1% 242,000 20.1%

< 2,500 9,355 66.2% 961,000 21.7% 142,000 11.8%

Table D.42: Riverside Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 49 0.3% 56,000 1.3% 18,000 1.5%

55% – 65% 704 5.0% 559,000 12.6% 152,000 12.6%

45% – 55% 1,760 12.5% 988,000 22.3% 283,000 23.5%

35% – 45% 2,700 19.1% 1,088,000 24.6% 294,000 24.4%

25% – 35% 3,629 25.7% 966,000 21.8% 264,000 21.9%

15% – 25% 4,185 29.6% 625,000 14.1% 160,000 13.3%

< 15% 1,105 7.8% 141,000 3.2% 34,000 2.8%
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Figure D.21: Riverside-San Bernardino-Ontario, CA MSA activity-
connectivity neighborhood map. Ontario is to the center left, San Bernardino
is to the center right, and Riverside is to the lower center. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Table D.43: Sacramento Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 0 0% 0 0% 0 0%

40,000 – 80,000 3 0.04% 3,000 0.11% 19,000 2.5%

20,000 – 40,000 25 0.4% 26,000 1.1% 79,000 10.6%

10,000 – 20,000 284 4.0% 369,000 16.3% 183,000 24.6%

5,000 – 10,000 1,163 16.3% 1,027,000 45.4% 279,000 37.5%

2,500 – 5,000 920 12.9% 417,000 18.4% 107,000 14.4%

< 2,500 4,746 66.5% 422,000 18.6% 78,000 10.4%

Table D.44: Sacramento Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 41 0.6% 45,000 2.0% 54,000 7.2%

55% – 65% 329 4.6% 317,000 14.0% 97,000 13%

45% – 55% 726 10.2% 539,000 23.8% 169,000 22.7%

35% – 45% 1,129 15.8% 546,000 24.1% 185,000 24.8%

25% – 35% 1,826 25.6% 463,000 20.5% 134,000 18.0%

15% – 25% 2,456 34.4% 291,000 12.8% 90,000 12.1%

< 15% 634 8.9% 64,000 2.8% 15,000 2.1%
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Figure D.22: Sacramento-Roseville-Folsom, CA MSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.45: Salt Lake City Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 1 0.03% 0 0% 13,000 2.2%

40,000 – 80,000 3 0.1% 4,000 0.3% 23,000 3.8%

20,000 – 40,000 19 0.7% 19,000 1.6% 60,000 10.2%

10,000 – 20,000 156 5.9% 155,000 13.2% 155,000 26.1%

5,000 – 10,000 753 28.3% 612,000 52.1% 236,000 39.8%

2,500 – 5,000 558 21.0% 265,000 22.6% 74,000 12.5%

< 2,500 1,167 43.9% 119,000 10.2% 32,000 5.4%

Table D.46: Salt Lake City Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 49 1.8% 55,000 4.6% 63,000 10.6%

55% – 65% 233 8.8% 196,000 16.7% 91,000 15.3%

45% – 55% 418 15.7% 310,000 26.4% 138,000 23.2%

35% – 45% 499 18.8% 273,000 23.2% 129,000 21.7%

25% – 35% 558 21.0% 198,000 16.8% 93,000 15.7%

15% – 25% 713 26.8% 119,000 10.1% 71,000 11.9%

< 15% 187 7.0% 25,000 2.1% 10,000 1.7%
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Figure D.23: Salt Lake City, UT MSA activity-connectivity neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table D.47: San Diego Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 1 0.01% 2,000 0.07% 12,000 1.0%

40,000 – 80,000 10 0.15% 21,000 0.7% 61,000 5.0%

20,000 – 40,000 102 1.5% 224,000 7.0% 180,000 14.9%

10,000 – 20,000 698 10.2% 1,006,000 31.4% 473,000 39.3%

5,000 – 10,000 1,250 18.3% 1,074,000 33.6% 322,000 26.7%

2,500 – 5,000 1,038 15.2% 502,000 15.7% 97,000 8.1%

< 2,500 3,733 54.6% 370,000 11.6% 59,000 4.9%

Table D.48: San Diego Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 56 0.8% 124,000 3.9% 54,000 4.5%

55% – 65% 319 4.7% 461,000 14.4% 193,000 16.0%

45% – 55% 696 10.2% 631,000 19.7% 231,000 19.2%

35% – 45% 1,077 15.8% 662,000 20.7% 257,000 21.4%

25% – 35% 1,709 25.0% 675,000 21.1% 253,000 21.0%

15% – 25% 2,300 33.7% 536,000 16.8% 182,000 15.1%

< 15% 675 9.9% 111,000 3.5% 34,000 2.9%
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Figure D.24: San Diego-Chula Vista-Carlsbad, CA MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.

373



Table D.49: San Francisco Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 22 0.3% 117,000 2.5% 425,000 19.9%

40,000 – 80,000 52 0.7% 241,000 5.2% 201,000 9.4%

20,000 – 40,000 306 4.4% 827,000 17.8% 436,000 20.4%

10,000 – 20,000 890 12.7% 1,359,000 29.2% 538,000 25.1%

5,000 – 10,000 1,347 19.2% 1,164,000 25.0% 351,000 16.4%

2,500 – 5,000 1,239 17.6% 577,000 12.4% 126,000 5.9%

< 2,500 3,172 45.1% 363,000 7.8% 64,000 3.0%

Table D.50: San Francisco Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 205 2.9% 645,000 13.9% 587,000 27.4%

55% – 65% 512 7.3% 971,000 20.9% 396,000 18.5%

45% – 55% 848 12.1% 927,000 19.9% 365,000 17.0%

35% – 45% 1,166 16.6% 846,000 18.2% 331,000 15.5%

25% – 35% 1,632 23.2% 707,000 15.2% 270,000 12.6%

15% – 25% 2,046 29.1% 429,000 9.2% 156,000 7.3%

< 15% 619 8.8% 122,000 2.6% 34,000 1.6%
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Figure D.25: San Francisco-Oakland-Berkeley, CA MSA activity-
connectivity neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Table D.51: San Jose Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 3 0.09% 2,000 0.12% 55,000 5.5%

40,000 – 80,000 13 0.4% 10,000 0.5% 93,000 9.3%

20,000 – 40,000 99 3.2% 179,000 9.1% 224,000 22.5%

10,000 – 20,000 611 19.8% 923,000 46.8% 399,000 40.0%

5,000 – 10,000 632 20.5% 607,000 30.8% 163,000 16.3%

2,500 – 5,000 274 8.9% 129,000 6.5% 33,000 3.4%

< 2,500 1,455 47.1% 124,000 6.3% 29,000 2.9%

Table D.52: San Jose Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 65 2.1% 103,000 5.2% 55,000 5.5%

55% – 65% 366 11.9% 502,000 25.4% 242,000 24.3%

45% – 55% 442 14.3% 504,000 25.5% 294,000 29.5%

35% – 45% 466 15.1% 375,000 19.0% 181,000 18.2%

25% – 35% 631 20.4% 279,000 14.1% 120,000 12.0%

15% – 25% 837 27.1% 135,000 6.9% 57,000 5.7%

< 15% 280 9.1% 76,000 3.8% 47,000 4.8%
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Figure D.26: San Jose-Sunnyvale-Santa Clara, CAMSA activity-connectivity
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.53: Seattle Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 20 0.2% 51,000 1.4% 332,000 19.5%

40,000 – 80,000 24 0.2% 63,000 1.7% 105,000 6.2%

20,000 – 40,000 78 0.7% 130,000 3.4% 181,000 10.7%

10,000 – 20,000 466 4.0% 563,000 14.9% 387,000 22.8%

5,000 – 10,000 1,610 13.7% 1,295,000 34.4% 422,000 24.9%

2,500 – 5,000 1,934 16.5% 933,000 24.8% 168,000 9.9%

< 2,500 7,580 64.7% 731,000 19.4% 100,000 5.9%

Table D.54: Seattle Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 191 1.6% 329,000 8.7% 308,000 18.1%

55% – 65% 559 4.8% 549,000 14.6% 286,000 16.9%

45% – 55% 1,075 9.2% 694,000 18.4% 388,000 22.9%

35% – 45% 1,843 15.7% 798,000 21.2% 287,000 16.9%

25% – 35% 3,084 26.3% 716,000 19.0% 239,000 14.1%

15% – 25% 3,843 32.8% 551,000 14.6% 143,000 8.4%

< 15% 1,117 9.5% 128,000 3.4% 46,000 2.7%

378



Figure D.27: Seattle-Tacoma-Bellevue, WA MSA activity-connectivity
neighborhood map. Seattle is in the upper center and Tacoma is to the lower
left. The area shown is a 40-mile by 40-mile square. Roads and water features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table D.55: St. Louis Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 3 0.02% 3,000 0.12% 42,000 3.4%

40,000 – 80,000 7 0.0% 7,000 0.2% 57,000 4.7%

20,000 – 40,000 32 0.2% 23,000 0.8% 113,000 9.2%

10,000 – 20,000 153 0.9% 139,000 5.2% 175,000 14.3%

5,000 – 10,000 949 5.7% 640,000 23.8% 377,000 30.8%

2,500 – 5,000 2,052 12.4% 897,000 33.4% 269,000 22.0%

< 2,500 13,391 80.7% 978,000 36.4% 189,000 15.5%

Table D.56: St. Louis Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 122 0.7% 122,000 4.5% 72,000 5.9%

55% – 65% 517 3.1% 334,000 12.5% 214,000 17.5%

45% – 55% 837 5.0% 382,000 14.2% 213,000 17.5%

35% – 45% 1,727 10.4% 485,000 18.1% 244,000 20%

25% – 35% 4,386 26.4% 615,000 22.9% 222,000 18.2%

15% – 25% 7,025 42.4% 578,000 21.5% 205,000 16.8%

< 15% 1,973 11.9% 170,000 6.3% 52,000 4.2%
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Figure D.28: St. Louis, MO-IL MSA activity-connectivity neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads and water fea-
tures by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table D.57: Tampa Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 0 0% 0 0% 0 0%

40,000 – 80,000 11 0.10% 6,000 0.2% 58,000 4.8%

20,000 – 40,000 49 0.5% 59,000 1.9% 109,000 9.2%

10,000 – 20,000 246 2.3% 207,000 6.9% 267,000 22.3%

5,000 – 10,000 1,404 13.3% 1,014,000 33.7% 403,000 33.8%

2,500 – 5,000 2,171 20.6% 965,000 32.1% 222,000 18.6%

< 2,500 6,644 63.1% 760,000 25.3% 134,000 11.3%

Table D.58: Tampa Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 132 1.3% 106,000 3.5% 62,000 5.2%

55% – 65% 544 5.2% 384,000 12.8% 183,000 15.4%

45% – 55% 966 9.2% 505,000 16.8% 262,000 22%

35% – 45% 1,471 14.0% 546,000 18.1% 242,000 20.3%

25% – 35% 2,751 26.1% 689,000 22.9% 236,000 19.8%

15% – 25% 3,549 33.7% 610,000 20.2% 161,000 13.5%

< 15% 1,112 10.6% 171,000 5.7% 46,000 3.8%
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Figure D.29: Tampa-St. Petersburg-Clearwater, FL MSA activity-
connectivity neighborhood map. Tampa is to the upper right and St. Peters-
burg is to the lower left. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table D.59: Washington Population and Jobs by Activity Density

Density
( / sq. mi.) Hexes % of

Hexes Population % of
Population Jobs % of

Jobs

> 80,000 24 0.11% 58,000 1.0% 453,000 16.6%

40,000 – 80,000 53 0.3% 173,000 2.9% 286,000 10.5%

20,000 – 40,000 213 1.1% 475,000 7.8% 412,000 15.1%

10,000 – 20,000 780 3.9% 1,107,000 18.3% 588,000 21.6%

5,000 – 10,000 1,980 9.9% 1,664,000 27.5% 520,000 19.1%

2,500 – 5,000 2,739 13.6% 1,314,000 21.7% 276,000 10.1%

< 2,500 14,293 71.2% 1,267,000 20.9% 189,000 6.9%

Table D.60: Washington Population and Jobs by % Ideal Walkshed

Percent Ideal
Walkshed Hexes % of

Hexes Population % of
Pop. Jobs % of

Jobs

> 65% 173 0.9% 377,000 6.2% 571,000 21.0%

55% – 65% 597 3.0% 737,000 12.2% 378,000 13.9%

45% – 55% 1,284 6.4% 987,000 16.3% 500,000 18.3%

35% – 45% 2,691 13.4% 1,205,000 19.9% 464,000 17.0%

25% – 35% 5,676 28.3% 1,351,000 22.3% 445,000 16.3%

15% – 25% 7,140 35.6% 1,083,000 17.9% 285,000 10.4%

< 15% 2,521 12.6% 318,000 5.3% 81,000 3.0%
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Figure D.30: Washington-Arlington-Alexandria, DC-VA-MD-WV MSA
activity-connectivity neighborhood map. The area shown is a 40-mile by 40-
mile square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Appendix E: Neighborhood Use Type Maps

This appendix contains tables showing breakdowns of the percentage of neighbor-

hoods of different use types (as defined in Table 2.6 on page 113)—and the numbers and

percentages of metro area population and jobs in those neighborhoods—in the twenty

largest metropolitan statistical areas in the US, along with ten additional metropolitan sta-

tistical areas that were selected because they are particularly interesting: either that they

are unusually dense for their size or have rapid transit or light rail.

Also included are maps of use types of neighborhoods in the same metro areas. All

the maps are at the same scale, and show a 40-mile by 40-mile square, which means that

outlying parts of larger metro areas may be left out, while views of smaller metro areas

may include areas outside the MSA limits.
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Figure E.1: Atlanta-Sandy Springs-Alpharetta, GA MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.1: Atlanta Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 21,729 68.8% 3,372,000 59.2% 118,000 4.9%

Residential 7,209 22.8% 1,575,000 27.7% 517,000 21.6%

Walkable
Residential 272 0.9% 201,000 3.5% 115,000 4.8%

Mixed Use 225 0.7% 99,000 1.7% 209,000 8.7%

Retail 261 0.8% 41,000 0.7% 129,000 5.4%

Retail Mix 286 0.9% 58,000 1.0% 103,000 4.3%

Education /
Medical 97 0.3% 20,000 0.3% 121,000 5.0%

Education /
Medical Mix 84 0.3% 21,000 0.4% 43,000 1.8%

Office 182 0.6% 69,000 1.2% 436,000 18.2%

Office Mix 267 0.8% 84,000 1.5% 201,000 8.4%

Industrial 508 1.6% 60,000 1.1% 225,000 9.4%

Industrial
Mix 469 1.5% 92,000 1.6% 177,000 7.4%
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Figure E.2: Austin-Round Rock-Georgetown, TX MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.2: Austin Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 5,719 58.2% 1,037,000 51.3% 41,000 5.0%

Residential 3,125 31.8% 616,000 30.5% 199,000 23.9%

Walkable
Residential 184 1.9% 173,000 8.6% 84,000 10.1%

Mixed Use 100 1.0% 59,000 2.9% 118,000 14.1%

Retail 72 0.7% 16,000 0.8% 48,000 5.8%

Retail Mix 107 1.1% 18,000 0.9% 33,000 3.9%

Education /
Medical 19 0.2% 7,000 0.3% 27,000 3.2%

Education /
Medical Mix 26 0.3% 9,000 0.4% 15,000 1.8%

Office 63 0.6% 19,000 0.9% 104,000 12.4%

Office Mix 135 1.4% 38,000 1.9% 84,000 10.0%

Industrial 164 1.7% 11,000 0.6% 47,000 5.7%

Industrial
Mix 109 1.1% 19,000 0.9% 34,000 4.1%
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Figure E.3: Baltimore-Columbia-Towson, MD MSA use type neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.3: Baltimore Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 5,453 52.2% 1,431,000 52.1% 60,000 5.2%

Residential 3,748 35.9% 802,000 29.2% 245,000 21.2%

Walkable
Residential 224 2.1% 269,000 9.8% 111,000 9.6%

Mixed Use 106 1.0% 61,000 2.2% 129,000 11.1%

Retail 79 0.8% 15,000 0.5% 59,000 5.1%

Retail Mix 112 1.1% 28,000 1.0% 54,000 4.7%

Education /
Medical 46 0.4% 19,000 0.7% 71,000 6.1%

Education /
Medical Mix 56 0.5% 29,000 1.0% 66,000 5.7%

Office 117 1.1% 16,000 0.6% 134,000 11.6%

Office Mix 143 1.4% 37,000 1.3% 81,000 7.1%

Industrial 219 2.1% 17,000 0.6% 86,000 7.4%

Industrial
Mix 150 1.4% 24,000 0.9% 59,000 5.1%
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Figure E.4: Boston-Cambridge-Newton, MA-NH MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.4: Boston Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 10,366 55.9% 2,114,000 44.2% 99,000 4.1%

Residential 5791 31.2% 1,319,000 27.6% 430,000 17.8%

Walkable
Residential 444 2.4% 835,000 17.4% 313,000 13.0%

Mixed Use 172 0.9% 129,000 2.7% 255,000 10.6%

Retail 169 0.9% 28,000 0.6% 102,000 4.2%

Retail Mix 245 1.3% 41,000 0.9% 77,000 3.2%

Education /
Medical 122 0.7% 73,000 1.5% 240,000 9.9%

Education /
Medical Mix 107 0.6% 39,000 0.8% 81,000 3.4%

Office 193 1.0% 62,000 1.3% 434,000 18.0%

Office Mix 236 1.3% 51,000 1.1% 123,000 5.1%

Industrial 283 1.5% 30,000 0.6% 130,000 5.4%

Industrial
Mix 409 2.2% 65,000 1.4% 133,000 5.5%
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Figure E.5: Charlotte-Concord-Gastonia, NC-SC MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.5: Charlotte Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 11,831 65.2% 1,344,000 55.4% 53,000 5.0%

Residential 4,724 26.0% 778,000 32.0% 263,000 24.7%

Walkable
Residential 118 0.7% 63,000 2.6% 39,000 3.6%

Mixed Use 109 0.6% 43,000 1.8% 89,000 8.3%

Retail 145 0.8% 19,000 0.8% 65,000 6.1%

Retail Mix 162 0.9% 31,000 1.3% 60,000 5.6%

Education /
Medical 28 0.2% 5,000 0.2% 27,000 2.5%

Education /
Medical Mix 46 0.3% 9,000 0.4% 18,000 1.7%

Office 118 0.7% 27,000 1.1% 182,000 17.0%

Office Mix 124 0.7% 32,000 1.3% 75,000 7.0%

Industrial 453 2.5% 34,000 1.4% 125,000 11.7%

Industrial
Mix 280 1.5% 43,000 1.8% 73,000 6.8%
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Figure E.6: Chicago-Naperville-Elgin, IL-IN-WI MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.6: Chicago Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 14,902 57.2% 4,640,000 49.1% 180,000 4.4%

Residential 6,924 26.6% 2,226,000 23.6% 709,000 17.3%

Walkable
Residential 1,054 4.0% 1,796,000 19.0% 572,000 13.9%

Mixed Use 303 1.2% 185,000 2.0% 381,000 9.3%

Retail 340 1.3% 55,000 0.6% 179,000 4.4%

Retail Mix 263 1.0% 75,000 0.8% 145,000 3.5%

Education /
Medical 149 0.6% 63,000 0.7% 246,000 6.0%

Education /
Medical Mix 145 0.6% 47,000 0.5% 84,000 2.0%

Office 228 0.9% 77,000 0.8% 682,000 16.6%

Office Mix 255 1.0% 84,000 0.9% 252,000 6.1%

Industrial 1,005 3.9% 95,000 1.0% 456,000 11.1%

Industrial
Mix 498 1.9% 102,000 1.1% 214,000 5.2%

398



Figure E.7: Cleveland-Elyria, OHMSAuse type neighborhoodmap. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table E.7: Cleveland Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 5,135 54.8% 1,054,000 51.6% 41,000 4.5%

Residential 2,995 31.9% 648,000 31.7% 211,000 23.1%

Walkable
Residential 187 2.0% 166,000 8.1% 76,000 8.3%

Mixed Use 66 0.7% 25,000 1.2% 57,000 6.2%

Retail 76 0.8% 13,000 0.6% 38,000 4.2%

Retail Mix 132 1.4% 25,000 1.2% 42,000 4.6%

Education /
Medical 46 0.5% 11,000 0.5% 79,000 8.6%

Education /
Medical Mix 40 0.4% 7,000 0.4% 14,000 1.5%

Office 87 0.9% 16,000 0.8% 141,000 15.4%

Office Mix 99 1.1% 18,000 0.9% 48,000 5.3%

Industrial 288 3.1% 23,000 1.1% 102,000 11.1%

Industrial
Mix 226 2.4% 36,000 1.8% 67,000 7.3%
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Figure E.8: Dallas-Fort Worth-Arlington, TX MSA use type neighborhood
map. Downtown Dallas is at the lower right and downtown Fort Worth is at
the far lower left. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table E.8: Dallas Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 16,623 61.3% 4,049,000 57.3% 145,000 4.6%

Residential 6,981 25.8% 1,823,000 25.8% 567,000 17.9%

Walkable
Residential 644 2.4% 571,000 8.1% 254,000 8.0%

Mixed Use 304 1.1% 157,000 2.2% 330,000 10.4%

Retail 283 1.0% 57,000 0.8% 194,000 6.1%

Retail Mix 248 0.9% 56,000 0.8% 117,000 3.7%

Education /
Medical 86 0.3% 26,000 0.4% 120,000 3.8%

Education /
Medical Mix 98 0.4% 29,000 0.4% 47,000 1.5%

Office 268 1.0% 77,000 1.1% 599,000 18.9%

Office Mix 204 0.8% 65,000 0.9% 199,000 6.3%

Industrial 906 3.3% 74,000 1.0% 416,000 13.1%

Industrial
Mix 463 1.7% 76,000 1.1% 182,000 5.7%

402



Figure E.9: Denver-Aurora-Lakewood, COMSA use type neighborhoodmap.
Boulder (not in the Denver MSA) is at the upper left. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Table E.9: Denver Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 4,543 57.5% 1,534,000 54.4% 67,000 5.2%

Residential 2,002 25.4% 630,000 22.3% 188,000 14.5%

Walkable
Residential 347 4.4% 379,000 13.4% 169,000 13.1%

Mixed Use 127 1.6% 80,000 2.8% 145,000 11.2%

Retail 122 1.5% 19,000 0.7% 57,000 4.4%

Retail Mix 87 1.1% 28,000 1.0% 58,000 4.4%

Education /
Medical 21 0.3% 12,000 0.4% 46,000 3.5%

Education /
Medical Mix 35 0.4% 12,000 0.4% 20,000 1.5%

Office 122 1.5% 33,000 1.2% 252,000 19.4%

Office Mix 88 1.1% 32,000 1.1% 83,000 6.4%

Industrial 239 3.0% 25,000 0.9% 137,000 10.5%

Industrial
Mix 163 2.1% 37,000 1.3% 77,000 5.9%
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Figure E.10: Detroit-Warren-Dearborn, MIMSAuse type neighborhoodmap.
The area shown is a 40-mile by 40-mile square. Roads and water features by
Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.10: Detroit Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 10,770 61.4% 2,366,000 55.4% 94,000 5.2%

Residential 4,753 27.1% 1,269,000 29.7% 405,000 22.6%

Walkable
Residential 387 2.2% 308,000 7.2% 130,000 7.3%

Mixed Use 138 0.8% 59,000 1.4% 119,000 6.7%

Retail 154 0.9% 25,000 0.6% 88,000 4.9%

Retail Mix 149 0.8% 30,000 0.7% 71,000 4.0%

Education /
Medical 62 0.4% 21,000 0.5% 98,000 5.4%

Education /
Medical Mix 74 0.4% 21,000 0.5% 37,000 2.1%

Office 203 1.2% 38,000 0.9% 315,000 17.6%

Office Mix 153 0.9% 37,000 0.9% 84,000 4.7%

Industrial 414 2.4% 45,000 1.1% 228,000 12.7%

Industrial
Mix 294 1.7% 55,000 1.3% 124,000 6.9%
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Figure E.11: Urban Honolulu, HIMSA use type neighborhood map. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table E.11: Honolulu Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 949 60.4% 488,000 54.8% 20,000 5.5%

Residential 366 23.3% 162,000 18.1% 42,000 11.7%

Walkable
Residential 79 5.0% 167,000 18.7% 61,000 16.9%

Mixed Use 27 1.7% 37,000 4.2% 71,000 19.6%

Retail 32 2.0% 5,000 0.5% 29,000 7.9%

Retail Mix 17 1.1% 12,000 1.4% 18,000 4.9%

Education /
Medical 5 0.3% 3,000 0.3% 11,000 3.1%

Education /
Medical Mix 15 1.0% 3,000 0.3% 6,000 1.8%

Office 5 0.3% 5,000 0.5% 41,000 11.4%

Office Mix 4 0.3% 4,000 0.4% 15,000 4.2%

Industrial 59 3.8% 3,000 0.3% 38,000 10.5%

Industrial
Mix 12 0.8% 4,000 0.4% 9,000 2.5%
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Figure E.12: Houston-The Woodlands-Sugar Land, TX MSA use type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table E.12: Houston Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 14,089 59.8% 3,740,000 56% 144,000 5.5%

Residential 6,630 28.1% 1,856,000 27.8% 567,000 21.8%

Walkable
Residential 515 2.2% 538,000 8.0% 258,000 9.9%

Mixed Use 230 1.0% 151,000 2.3% 289,000 11.1%

Retail 203 0.9% 39,000 0.6% 123,000 4.7%

Retail Mix 200 0.8% 52,000 0.8% 117,000 4.5%

Education /
Medical 61 0.3% 23,000 0.3% 133,000 5.1%

Education /
Medical Mix 63.0 0.3% 22,000 0.3% 39,000 1.5%

Office 96 0.4% 27,000 0.4% 230,000 8.8%

Office Mix 168 0.7% 67,000 1.0% 195,000 7.5%

Industrial 928 3.9% 84,000 1.3% 355,000 13.6%

Industrial
Mix 390 1.7% 83,000 1.2% 155,000 6.0%
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Figure E.13: Los Angeles-Long Beach-Anaheim, CA MSA use type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table E.13: Los Angeles Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 6,918 48.8% 5,907,000 44.6% 307,000 5.5%

Residential 3,406 24.0% 2,737,000 20.7% 755,000 13.5%

Walkable
Residential 1,764 12.5% 3,535,000 26.7% 1,204,000 21.5%

Mixed Use 401 2.8% 404,000 3.1% 718,000 12.8%

Retail 169 1.2% 55,000 0.4% 226,000 4.0%

Retail Mix 135 1.0% 70,000 0.5% 161,000 2.9%

Education /
Medical 86 0.6% 46,000 0.3% 178,000 3.2%

Education /
Medical Mix 49 0.3% 27,000 0.2% 48,000 0.9%

Office 195 1.4% 103,000 0.8% 769,000 13.7%

Office Mix 183 1.3% 127,000 1.0% 367,000 6.6%

Industrial 558 3.9% 100,000 0.8% 577,000 10.3%

Industrial
Mix 304 2.1% 120,000 0.9% 286,000 5.1%
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Figure E.14: Miami-Fort Lauderdale-Pompano Beach, FL MSA use type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table E.14: Miami Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 4,413 45.1% 3,005,000 49.7% 135,000 5.9%

Residential 3,237 33.1% 1,590,000 26.3% 463,000 20.2%

Walkable
Residential 713 7.3% 975,000 16.1% 383,000 16.7%

Mixed Use 240 2.5% 159,000 2.6% 296,000 12.9%

Retail 152 1.6% 32,000 0.5% 123,000 5.3%

Retail Mix 136 1.4% 57,000 0.9% 99,000 4.3%

Education /
Medical 46 0.5% 23,000 0.4% 97,000 4.2%

Education /
Medical Mix 48 0.5% 25,000 0.4% 40,000 1.7%

Office 108 1.1% 29,000 0.5% 176,000 7.7%

Office Mix 193 2% 72,000 1.2% 205,000 9%

Industrial 284 2.9% 26,000 0.4% 158,000 6.9%

Industrial
Mix 209 2.1% 57,000 0.9% 121,000 5.3%
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Figure E.15: Minneapolis-St. Paul-Bloomington, MN-WI MSA use type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table E.15: Minneapolis Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 12,147 62.9% 1,797,000 52.4% 71,000 4.2%

Residential 5,113 26.5% 931,000 27.1% 311,000 18.4%

Walkable
Residential 308 1.6% 310,000 9.0% 142,000 8.4%

Mixed Use 180 0.9% 92,000 2.7% 181,000 10.7%

Retail 153 0.8% 25,000 0.7% 75,000 4.5%

Retail Mix 171 0.9% 32,000 0.9% 63,000 3.7%

Education /
Medical 101 0.5% 27,000 0.8% 101,000 6.0%

Education /
Medical Mix 70 0.4% 25,000 0.7% 42,000 2.5%

Office 98 0.5% 33,000 1.0% 262,000 15.5%

Office Mix 145 0.8% 44,000 1.3% 115,000 6.8%

Industrial 423 2.2% 45,000 1.3% 169,000 10.0%

Industrial
Mix 392 2.0% 71,000 2.1% 157,000 9.3%
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Figure E.16: New York-Newark-Jersey City, NY-NJ-PAMSA use type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table E.16: New York Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 14,693 46.6% 6,022,000 31.3% 295,000 3.7%

Residential 11,184 35.5% 3,804,000 19.8% 1,140,000 14.2%

Walkable
Residential 2,029 6.4% 7,937,000 41.2% 1,942,000 24.2%

Mixed Use 429 1.4% 550,000 2.9% 974,000 12.1%

Retail 349 1.1% 50,000 0.3% 175,000 2.2%

Retail Mix 414 1.3% 93,000 0.5% 165,000 2.1%

Education /
Medical 214 0.7% 126,000 0.7% 378,000 4.7%

Education /
Medical Mix 215 0.7% 111,000 0.6% 156,000 1.9%

Office 381 1.2% 184,000 1.0% 1539,000 19.2%

Office Mix 454 1.4% 172,000 0.9% 606,000 7.5%

Industrial 517 1.6% 63,000 0.3% 353,000 4.4%

Industrial
Mix 638 2.0% 146,000 0.8% 309,000 3.8%
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Figure E.17: Philadelphia-Camden-Wilmington, PA-NJ-DE-MD MSA use
type neighborhood map. Philadelphia is just right of center and Wilming-
ton is at the lower left. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table E.17: Philadelphia Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 9,782 49% 2,723,000 45.3% 123,000 4.8%

Residential 7,280 36.5% 1,901,000 31.6% 608,000 23.5%

Walkable
Residential 534 2.7% 867,000 14.4% 272,000 10.5%

Mixed Use 191 1.0% 119,000 2.0% 233,000 9.0%

Retail 237 1.2% 34,000 0.6% 125,000 4.8%

Retail Mix 235 1.2% 46,000 0.8% 83,000 3.2%

Education /
Medical 188 0.9% 59,000 1.0% 221,000 8.6%

Education /
Medical Mix 159 0.8% 45,000 0.7% 85,000 3.3%

Office 274 1.4% 60,000 1.0% 416,000 16.1%

Office Mix 274 1.4% 60,000 1.0% 142,000 5.5%

Industrial 476 2.4% 38,000 0.6% 162,000 6.3%

Industrial
Mix 340 1.7% 61,000 1.0% 112,000 4.3%
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Figure E.18: Phoenix-Mesa-Chandler, AZ MSA use type neighborhood map.
The area shown is a 40-mile by 40-mile square. Roads and water features by
Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.18: Phoenix Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 8,126 62.2% 2,732,000 59.2% 96,000 5.3%

Residential 3,035 23.2% 1,088,000 23.6% 327,000 18.1%

Walkable
Residential 465 3.6% 443,000 9.6% 190,000 10.5%

Mixed Use 166 1.3% 90,000 1.9% 171,000 9.5%

Retail 188 1.4% 33,000 0.7% 133,000 7.3%

Retail Mix 119 0.9% 31,000 0.7% 68,000 3.7%

Education /
Medical 56 0.4% 23,000 0.5% 103,000 5.7%

Education /
Medical Mix 56 0.4% 22,000 0.5% 44,000 2.4%

Office 143 1.1% 41,000 0.9% 283,000 15.6%

Office Mix 139 1.1% 43,000 0.9% 126,000 6.9%

Industrial 418 3.2% 35,000 0.8% 184,000 10.2%

Industrial
Mix 150 1.1% 36,000 0.8% 86,000 4.7%
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Figure E.19: Pittsburgh, PA MSA use type neighborhood map. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table E.19: Pittsburgh Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 10,008 57.8% 1,072,000 47.2% 47,000 4.5%

Residential 5,760 33.3% 842,000 37.1% 284,000 27.2%

Walkable
Residential 123 0.7% 130,000 5.7% 63,000 6.1%

Mixed Use 81 0.5% 50,000 2.2% 89,000 8.5%

Retail 178 1.0% 19,000 0.8% 73,000 7.0%

Retail Mix 181 1.0% 28,000 1.3% 60,000 5.7%

Education /
Medical 108 0.6% 27,000 1.2% 100,000 9.6%

Education /
Medical Mix 75 0.4% 18,000 0.8% 28,000 2.7%

Office 118 0.7% 18,000 0.8% 146,000 14.0%

Office Mix 139 0.8% 21,000 0.9% 45,000 4.3%

Industrial 320 1.8% 20,000 0.9% 61,000 5.8%

Industrial
Mix 223 1.3% 26,000 1.1% 50,000 4.8%
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Figure E.20: Portland-Vancouver-Hillsboro, OR-WAMSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.20: Portland Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 5,464 55.8% 1,169,000 49.2% 58,000 5.6%

Residential 3,093 31.6% 638,000 26.9% 189,000 18.3%

Walkable
Residential 306 3.1% 344,000 14.5% 149,000 14.4%

Mixed Use 113 1.2% 80,000 3.4% 150,000 14.5%

Retail 52 0.5% 6,000 0.3% 18,000 1.8%

Retail Mix 80 0.8% 17,000 0.7% 37,000 3.6%

Education /
Medical 29 0.3% 12,000 0.5% 46,000 4.5%

Education /
Medical Mix 29 0.3% 14,000 0.6% 21,000 2.0%

Office 28 0.3% 14,000 0.6% 97,000 9.4%

Office Mix 46 0.5% 20,000 0.8% 74,000 7.2%

Industrial 374 3.8% 29,000 1.2% 121,000 11.7%

Industrial
Mix 178 1.8% 33,000 1.4% 74,000 7.2%
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Figure E.21: Riverside-San Bernardino-Ontario, CA MSA use type neigh-
borhood map. Ontario is to the center left, San Bernardino is to the center
right, and Riverside is to the lower center. The area shown is a 40-mile by 40-
mile square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Table E.21: Riverside Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 9,404 66.5% 2,911,000 65.8% 111,000 9.2%

Residential 3,171 22.4% 968,000 21.9% 292,000 24.2%

Walkable
Residential 320 2.3% 323,000 7.3% 131,000 10.9%

Mixed Use 84 0.6% 40,000 0.9% 82,000 6.8%

Retail 203 1.4% 29,000 0.7% 91,000 7.5%

Retail Mix 128 0.9% 24,000 0.5% 48,000 4.0%

Education /
Medical 42 0.3% 15,000 0.3% 50,000 4.2%

Education /
Medical Mix 29 0.2% 13,000 0.3% 23,000 1.9%

Office 50 0.4% 7,000 0.2% 43,000 3.5%

Office Mix 76 0.5% 19,000 0.4% 54,000 4.5%

Industrial 460 3.3% 40,000 0.9% 211,000 17.5%

Industrial
Mix 165 1.2% 35,000 0.8% 70,000 5.8%
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Figure E.22: Sacramento-Roseville-Folsom, CAMSA use type neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.22: Sacramento Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 4,197 58.8% 1,291,000 57.1% 57,000 7.7%

Residential 1,960 27.4% 619,000 27.4% 181,000 24.3%

Walkable
Residential 219 3.1% 207,000 9.2% 96,000 12.9%

Mixed Use 78 1.1% 47,000 2.1% 85,000 11.4%

Retail 115 1.6% 11,000 0.5% 40,000 5.4%

Retail Mix 65 0.9% 12,000 0.5% 24,000 3.2%

Education /
Medical 25 0.4% 10,000 0.4% 40,000 5.4%

Education /
Medical Mix 18 0.3% 4,000 0.2% 8,000 1.1%

Office 54 0.8% 13,000 0.6% 65,000 8.7%

Office Mix 75 1.1% 22,000 1.0% 48,000 6.5%

Industrial 225 3.2% 8,000 0.4% 59,000 7.9%

Industrial
Mix 110 1.5% 18,000 0.8% 41,000 5.5%
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Figure E.23: Salt Lake City, UT MSA use type neighborhood map. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table E.23: Salt Lake City Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 1,276 48% 578,000 49.2% 27,000 4.6%

Residential 749 28.2% 340,000 29% 98,000 16.6%

Walkable
Residential 126 4.7% 122,000 10.4% 56,000 9.4%

Mixed Use 81 3.0% 48,000 4.1% 95,000 16.1%

Retail 41 1.5% 7,000 0.6% 23,000 3.9%

Retail Mix 18 0.7% 7,000 0.6% 14,000 2.3%

Education /
Medical 13 0.5% 5,000 0.4% 23,000 3.8%

Education /
Medical Mix 9 0.3% 4,000 0.4% 6,000 1.0%

Office 57 2.1% 13,000 1.1% 88,000 14.8%

Office Mix 45 1.7% 19,000 1.6% 48,000 8.0%

Industrial 140 5.3% 14,000 1.2% 76,000 12.8%

Industrial
Mix 102 3.8% 17,000 1.4% 40,000 6.7%
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Figure E.24: San Diego-Chula Vista-Carlsbad, CA MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.24: San Diego Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 3,977 58.2% 1,744,000 54.5% 78,000 6.5%

Residential 1,776 26.0% 703,000 22% 195,000 16.2%

Walkable
Residential 348 5.1% 517,000 16.2% 179,000 14.9%

Mixed Use 120 1.8% 89,000 2.8% 174,000 14.4%

Retail 97 1.4% 23,000 0.7% 82,000 6.8%

Retail Mix 52 0.8% 19,000 0.6% 48,000 4.0%

Education /
Medical 16 0.2% 10,000 0.3% 30,000 2.5%

Education /
Medical Mix 37 0.5% 13,000 0.4% 26,000 2.2%

Office 71 1.0% 16,000 0.5% 134,000 11.1%

Office Mix 81 1.2% 21,000 0.7% 82,000 6.8%

Industrial 153 2.2% 18,000 0.6% 106,000 8.8%

Industrial
Mix 104 1.5% 25,000 0.8% 71,000 5.9%
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Figure E.25: San Francisco-Oakland-Berkeley, CA MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.25: San Francisco Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 3,815 54.3% 2,211,000 47.6% 113,000 5.3%

Residential 1,701 24.2% 886,000 19.1% 249,000 11.6%

Walkable
Residential 502 7.1% 1,131,000 24.3% 375,000 17.5%

Mixed Use 177 2.5% 193,000 4.1% 347,000 16.2%

Retail 89 1.3% 11,000 0.2% 35,000 1.7%

Retail Mix 87 1.2% 23,000 0.5% 71,000 3.3%

Education /
Medical 18 0.3% 11,000 0.2% 42,000 1.9%

Education /
Medical Mix 27 0.4% 12,000 0.2% 21,000 1.0%

Office 112 1.6% 64,000 1.4% 508,000 23.8%

Office Mix 124 1.8% 45,000 1.0% 133,000 6.2%

Industrial 233 3.3% 23,000 0.5% 164,000 7.7%

Industrial
Mix 143 2.0% 37,000 0.8% 81,000 3.8%
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Figure E.26: San Jose-Sunnyvale-Santa Clara, CA MSA use type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.26: San Jose Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 1,467 47.5% 955,000 48.4% 49,000 4.9%

Residential 901 29.2% 470,000 23.8% 133,000 13.3%

Walkable
Residential 246 8.0% 387,000 19.6% 149,000 14.9%

Mixed Use 52 1.7% 45,000 2.3% 81,000 8.1%

Retail 43 1.4% 10,000 0.5% 30,000 3.1%

Retail Mix 23 0.7% 6,000 0.3% 11,000 1.1%

Education /
Medical 16 0.5% 9,000 0.5% 48,000 4.8%

Education /
Medical Mix 6 0.2% 3,000 0.1% 4,000 0.4%

Office 86 2.8% 21,000 1.1% 226,000 22.6%

Office Mix 47 1.5% 21,000 1.1% 60,000 6.0%

Industrial 125 4% 25,000 1.2% 143,000 14.4%

Industrial
Mix 75 2.4% 21,000 1.1% 62,000 6.3%
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Figure E.27: Seattle-Tacoma-Bellevue, WA MSA use type neighborhood
map. Seattle is in the upper center and Tacoma is to the lower left. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table E.27: Seattle Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 7,608 65.0% 2,093,000 55.6% 90,000 5.3%

Residential 2,770 23.7% 847,000 22.5% 240,000 14.1%

Walkable
Residential 395 3.4% 506,000 13.4% 216,000 12.7%

Mixed Use 153 1.3% 116,000 3.1% 223,000 13.2%

Retail 97 0.8% 14,000 0.4% 95,000 5.6%

Retail Mix 82 0.7% 28,000 0.7% 64,000 3.8%

Education /
Medical 27 0.2% 19,000 0.5% 58,000 3.4%

Education /
Medical Mix 22 0.2% 9,000 0.3% 22,000 1.3%

Office 59 0.5% 31,000 0.8% 247,000 14.6%

Office Mix 69 0.6% 38,000 1.0% 145,000 8.5%

Industrial 281 2.4% 31,000 0.8% 226,000 13.3%

Industrial
Mix 149 1.3% 32,000 0.8% 71,000 4.2%
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Figure E.28: St. Louis, MO-IL MSA use type neighborhood map. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table E.28: St. Louis Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 10,551 63.6% 1,405,000 52.3% 55,000 4.5%

Residential 4,402 26.5% 866,000 32.2% 281,000 23.0%

Walkable
Residential 217 1.3% 161,000 6.0% 84,000 6.8%

Mixed Use 118 0.7% 49,000 1.8% 94,000 7.7%

Retail 159 1.0% 25,000 0.9% 74,000 6.0%

Retail Mix 168 1.0% 35,000 1.3% 61,000 5.0%

Education /
Medical 81 0.5% 20,000 0.7% 107,000 8.8%

Education /
Medical Mix 71 0.4% 15,000 0.6% 29,000 2.3%

Office 92 0.6% 22,000 0.8% 159,000 13.0%

Office Mix 140 0.8% 31,000 1.2% 77,000 6.3%

Industrial 392 2.4% 27,000 1.0% 135,000 11%

Industrial
Mix 196 1.2% 30,000 1.1% 67,000 5.5%
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Figure E.29: Tampa-St. Petersburg-Clearwater, FL MSA use type neighbor-
hood map. Tampa is to the upper right and St. Petersburg is to the lower left.
The area shown is a 40-mile by 40-mile square. Roads and water features by
Stamen Design used under Creative Commons CC BY 3.0 license.
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Table E.29: Tampa Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 5,751 54.6% 1,604,000 53.3% 69,000 5.7%

Residential 3,377 32.1% 930,000 30.9% 282,000 23.6%

Walkable
Residential 302 2.9% 225,000 7.5% 114,000 9.6%

Mixed Use 113 1.1% 56,000 1.9% 92,000 7.7%

Retail 97 0.9% 23,000 0.8% 69,000 5.8%

Retail Mix 141 1.3% 30,000 1.0% 52,000 4.4%

Education /
Medical 55 0.5% 21,000 0.7% 80,000 6.7%

Education /
Medical Mix 50 0.5% 16,000 0.5% 24,000 2.0%

Office 121 1.1% 32,000 1.1% 189,000 15.9%

Office Mix 99 0.9% 33,000 1.1% 84,000 7.1%

Industrial 235 2.2% 14,000 0.5% 77,000 6.4%

Industrial
Mix 184 1.7% 27,000 0.9% 61,000 5.1%
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Figure E.30: Washington-Arlington-Alexandria, DC-VA-MD-WV MSA use
type neighborhood map. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table E.30: Washington Distribution of Population and Jobs by Use Type

Use Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Residential 12,451 62.0% 3,274,000 54.0% 131,000 4.8%

Residential 5,466 27.2% 1,394,000 23.0% 423,000 15.5%

Walkable
Residential 503 2.5% 812,000 13.4% 333,000 12.2%

Mixed Use 220 1.1% 177,000 2.9% 308,000 11.3%

Retail 189 0.9% 30,000 0.5% 116,000 4.2%

Retail Mix 143 0.7% 42,000 0.7% 100,000 3.7%

Education /
Medical 89 0.4% 27,000 0.4% 92,000 3.4%

Education /
Medical Mix 67 0.3% 23,000 0.4% 41,000 1.5%

Office 265 1.3% 99,000 1.6% 653,000 24.0%

Office Mix 231 1.2% 118,000 1.9% 344,000 12.6%

Industrial 221 1.1% 17,000 0.3% 95,000 3.5%

Industrial
Mix 237 1.2% 43,000 0.7% 90,000 3.3%
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Appendix F: Neighborhood Housing Type Maps

This appendix contains tables showing breakdowns of the percentage of neighbor-

hoods of different housing types (as defined in Table 2.8 on page 118)—and the numbers

and percentages of metro area population and jobs in those neighborhoods—in the twenty

largest metropolitan statistical areas in the US, along with ten additional metropolitan sta-

tistical areas that were selected because they are particularly interesting: either that they

are unusually dense for their size or have rapid transit or light rail.

Also included are maps of housing types of neighborhoods in the same metro areas.

All the maps are at the same scale, and show a 40-mile by 40-mile square, which means

that outlying parts of larger metro areas may be left out, while views of smaller metro areas

may include areas outside the MSA limits.
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Table F.1: Atlanta Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 13,864 43.9% 2,097,000 36.8% 283,000 11.8%

Single-Family 8,787 27.8% 1,149,000 20.2% 291,000 12.2%

Mixed
Single-Family 5,787 18.3% 1,090,000 19.2% 463,000 19.3%

Multifamily:
Small

Building
313 1.0% 165,000 2.9% 114,000 4.8%

Multifamily:
Large

Building
583 1.8% 393,000 6.9% 680,000 28.4%

Multifamily:
Mixed Types 1,588 5% 712,000 12.5% 471,000 19.6%

Mobile
Homes 336 1.1% 28,000 0.5% 7,000 0.3%

Mixed
Housing
Types

262 0.8% 56,000 1.0% 35,000 1.5%

Few Housing
Units 69 0.2% 0 0% 51,000 2.1%

448



Figure F.1: Atlanta-Sandy Springs-Alpharetta, GAMSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by StamenDesign used under Creative Commons CCBY 3.0 li-
cense. Roads and water features by Stamen Design used under Creative Com-
mons CC BY 3.0 license.
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Table F.2: Austin Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 2,460 25.0% 468,000 23.2% 66,000 7.9%

Single-Family 2,559 26.1% 387,000 19.1% 94,000 11.2%

Mixed
Single-Family 2,532 25.8% 494,000 24.4% 196,000 23.4%

Multifamily:
Small

Building
26 0.3% 21,000 1.1% 13,000 1.5%

Multifamily:
Large

Building
330 3.4% 213,000 10.6% 252,000 30.1%

Multifamily:
Mixed Types 555 5.7% 307,000 15.2% 183,000 21.9%

Mobile
Homes 1,101 11.2% 82,000 4.1% 13,000 1.6%

Mixed
Housing
Types

204 2.1% 47,000 2.3% 16,000 2.0%

Few Housing
Units 56 0.6% 2,000 0.1% 3,000 0.3%
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Figure F.2: Austin-Round Rock-Georgetown, TX MSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table F.3: Baltimore Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 4,911 47.0% 506,000 18.4% 107,000 9.3%

Single-Family 1,742 16.7% 312,000 11.3% 99,000 8.6%

Mixed
Single-Family 1,454 13.9% 471,000 17.2% 184,000 15.9%

Multifamily:
Small

Building
980 9.4% 863,000 31.4% 304,000 26.3%

Multifamily:
Large

Building
261 2.5% 157,000 5.7% 227,000 19.7%

Multifamily:
Mixed Types 817 7.8% 406,000 14.8% 197,000 17.1%

Mobile
Homes 131 1.3% 14,000 0.5% 15,000 1.3%

Mixed
Housing
Types

47 0.4% 14,000 0.5% 9,000 0.8%

Few Housing
Units 110 1.1% 4,000 0.1% 13,000 1.1%
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Figure F.3: Baltimore-Columbia-Towson, MD MSA housing type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table F.4: Boston Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 4,959 26.8% 608,000 12.7% 145,000 6.0%

Single-Family 5,670 30.6% 803,000 16.8% 269,000 11.1%

Mixed
Single-Family 5,026 27.1% 1,051,000 22.0% 539,000 22.3%

Multifamily:
Small

Building
826 4.5% 1,228,000 25.7% 408,000 16.9%

Multifamily:
Large

Building
321 1.7% 370,000 7.7% 652,000 27.0%

Multifamily:
Mixed Types 1,323 7.1% 673,000 14.1% 370,000 15.3%

Mobile
Homes 133 0.7% 13,000 0.3% 4,000 0.2%

Mixed
Housing
Types

205 1.1% 37,000 0.8% 24,000 1.0%

Few Housing
Units 74 0.4% 2,000 0.04% 7,000 0.3%
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Figure F.4: Boston-Cambridge-Newton, MA-NH MSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table F.5: Charlotte Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 3,661 20.2% 533,000 21.9% 113,000 10.5%

Single-Family 5,983 33% 682,000 28.1% 187,000 17.5%

Mixed
Single-Family 6,141 33.9% 751,000 30.9% 301,000 28.2%

Multifamily:
Small

Building
49 0.3% 24,000 1.0% 17,000 1.6%

Multifamily:
Large

Building
248 1.4% 106,000 4.3% 218,000 20.5%

Multifamily:
Mixed Types 561 3.1% 246,000 10.1% 170,000 15.9%

Mobile
Homes 1,266 7% 60,000 2.5% 18,000 1.7%

Mixed
Housing
Types

145 0.8% 25,000 1.0% 21,000 2.0%

Few Housing
Units 84 0.5% 1,000 0.03% 21,000 2.0%
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Figure F.5: Charlotte-Concord-Gastonia, NC-SC MSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table F.6: Chicago Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 7,417 28.5% 1,470,000 15.6% 356,000 8.7%

Single-Family 7,835 30.1% 1,941,000 20.6% 521,000 12.7%

Mixed
Single-Family 6,519 25% 2,337,000 24.7% 981,000 23.9%

Multifamily:
Small

Building
1478 5.7% 1,898,000 20.1% 560,000 13.7%

Multifamily:
Large

Building
551 2.1% 682,000 7.2% 962,000 23.5%

Multifamily:
Mixed Types 1,671 6.4% 1,007,000 10.7% 609,000 14.9%

Mobile
Homes 200 0.8% 39,000 0.4% 32,000 0.8%

Mixed
Housing
Types

213 0.8% 70,000 0.7% 33,000 0.8%

Few Housing
Units 182 0.7% 1,000 0.01% 44,000 1.1%
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Figure F.6: Chicago-Naperville-Elgin, IL-IN-WI MSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.

459



Table F.7: Cleveland Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 4,455 47.5% 530,000 26.0% 137,000 14.9%

Single-Family 2,311 24.6% 508,000 24.9% 165,000 18.0%

Mixed
Single-Family 1,636 17.4% 555,000 27.2% 224,000 24.5%

Multifamily:
Small

Building
117 1.2% 82,000 4.0% 33,000 3.6%

Multifamily:
Large

Building
183 2.0% 107,000 5.3% 166,000 18.1%

Multifamily:
Mixed Types 514 5.5% 242,000 11.8% 166,000 18.2%

Mobile
Homes 23 0.2% 5,000 0.2% 1,000 0.1%

Mixed
Housing
Types

71 0.8% 12,000 0.6% 8,000 0.9%

Few Housing
Units 67 0.7% 0 0% 15,000 1.7%
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Figure F.7: Cleveland-Elyria, OHMSA housing type neighborhoodmap. The
area shown is a 40-mile by 40-mile square. Roads and water features by Sta-
men Design used under Creative Commons CC BY 3.0 license.
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Table F.8: Dallas Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 8,076 29.8% 2,362,000 33.4% 444,000 14%

Single-Family 6,986 25.8% 1,430,000 20.3% 388,000 12.2%

Mixed
Single-Family 6,572 24.2% 1,458,000 20.6% 583,000 18.4%

Multifamily:
Small

Building
270 1.0% 171,000 2.4% 98,000 3.1%

Multifamily:
Large

Building
1,006 3.7% 668,000 9.5% 998,000 31.5%

Multifamily:
Mixed Types 1,352 5.0% 771,000 10.9% 473,000 14.9%

Mobile
Homes 2,218 8.2% 138,000 2.0% 52,000 1.6%

Mixed
Housing
Types

394 1.5% 62,000 0.9% 65,000 2.0%

Few Housing
Units 234 0.9% 0 0% 71,000 2.2%
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Figure F.8: Dallas-Fort Worth-Arlington, TX MSA housing type neighbor-
hood map. Downtown Dallas is at the lower right and downtown Fort Worth
is at the far lower left. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.9: Denver Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 3,549 44.9% 782,000 27.7% 115,000 8.9%

Single-Family 1,511 19.1% 502,000 17.8% 110,000 8.5%

Mixed
Single-Family 1,320 16.7% 635,000 22.5% 245,000 18.9%

Multifamily:
Small

Building
183 2.3% 87,000 3.1% 65,000 5.0%

Multifamily:
Large

Building
477 6.0% 355,000 12.6% 476,000 36.7%

Multifamily:
Mixed Types 594 7.5% 389,000 13.8% 225,000 17.3%

Mobile
Homes 126 1.6% 39,000 1.4% 15,000 1.1%

Mixed
Housing
Types

64 0.8% 32,000 1.1% 24,000 1.9%

Few Housing
Units 72 0.9% 0 0% 23,000 1.7%
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Figure F.9: Denver-Aurora-Lakewood, CO MSA housing type neighborhood
map. Boulder (not in the Denver MSA) is at the upper left. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Table F.10: Detroit Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 8,769 50.0% 1,469,000 34.4% 337,000 18.8%

Single-Family 3,803 21.7% 1,055,000 24.7% 324,000 18.0%

Mixed
Single-Family 2,788 15.9% 971,000 22.7% 435,000 24.2%

Multifamily:
Small

Building
340 1.9% 163,000 3.8% 117,000 6.5%

Multifamily:
Large

Building
205 1.2% 113,000 2.6% 185,000 10.3%

Multifamily:
Mixed Types 786 4.5% 353,000 8.2% 262,000 14.6%

Mobile
Homes 470 2.7% 93,000 2.2% 50,000 2.8%

Mixed
Housing
Types

286 1.6% 57,000 1.3% 36,000 2.0%

Few Housing
Units 104 0.6% 0 0% 47,000 2.6%
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Figure F.10: Detroit-Warren-Dearborn, MI MSA housing type neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table F.11: Honolulu Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 293 18.7% 111,000 12.5% 9,000 2.5%

Single-Family 429 27.3% 187,000 21.0% 23,000 6.5%

Mixed
Single-Family 398 25.4% 226,000 25.4% 42,000 11.6%

Multifamily:
Small

Building
118 7.5% 59,000 6.6% 35,000 9.6%

Multifamily:
Large

Building
100 6.4% 174,000 19.5% 190,000 52.5%

Multifamily:
Mixed Types 168 10.7% 133,000 15.0% 43,000 11.8%

Mobile
Homes 0 0% 0 0% 0 0%

Mixed
Housing
Types

0 0% 0 0% 0 0%

Few Housing
Units 64 4.1% 1,000 0.1% 20,000 5.4%
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Figure F.11: Urban Honolulu, HI MSA housing type neighborhood map. The
area shown is a 40-mile by 40-mile square. Roads and water features by Sta-
men Design used under Creative Commons CC BY 3.0 license.
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Table F.12: Houston Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 5,538 23.5% 1,895,000 28.4% 315,000 12.1%

Single-Family 6,001 25.5% 1,470,000 22.0% 380,000 14.6%

Mixed
Single-Family 7,032 29.8% 1,489,000 22.3% 517,000 19.8%

Multifamily:
Small

Building
53 0.2% 42,000 0.6% 29,000 1.1%

Multifamily:
Large

Building
996 4.2% 745,000 11.1% 847,000 32.5%

Multifamily:
Mixed Types 1,077 4.6% 730,000 10.9% 398,000 15.3%

Mobile
Homes 2,171 9.2% 186,000 2.8% 44,000 1.7%

Mixed
Housing
Types

525 2.2% 117,000 1.7% 69,000 2.6%

Few Housing
Units 180 0.8% 8,000 0.1% 7,000 0.3%
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Figure F.12: Houston-The Woodlands-Sugar Land, TX MSA housing type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.13: Los Angeles Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 3,730 26.3% 1,696,000 12.8% 364,000 6.5%

Single-Family 2,655 18.7% 1,861,000 14.1% 587,000 10.5%

Mixed
Single-Family 3,533 24.9% 3,560,000 26.9% 1,199,000 21.4%

Multifamily:
Small

Building
673 4.8% 988,000 7.5% 415,000 7.4%

Multifamily:
Large

Building
880 6.2% 1,746,000 13.2% 1,472,000 26.3%

Multifamily:
Mixed Types 1,959 13.8% 2,948,000 22.3% 1,231,000 22.0%

Mobile
Homes 189 1.3% 81,000 0.6% 72,000 1.3%

Mixed
Housing
Types

280 2.0% 343,000 2.6% 118,000 2.1%

Few Housing
Units 269 1.9% 8,000 0.1% 141,000 2.5%
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Figure F.13: Los Angeles-Long Beach-Anaheim, CA MSA housing type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.14: Miami Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 2,562 26.2% 858,000 14.2% 167,000 7.3%

Single-Family 1,464 15.0% 830,000 13.7% 197,000 8.6%

Mixed
Single-Family 1,911 19.5% 1,287,000 21.3% 439,000 19.1%

Multifamily:
Small

Building
783 8.0% 500,000 8.3% 172,000 7.5%

Multifamily:
Large

Building
1026 10.5% 1,091,000 18.0% 661,000 28.8%

Multifamily:
Mixed Types 1526 15.6% 1,301,000 21.5% 552,000 24.1%

Mobile
Homes 171 1.7% 58,000 1.0% 23,000 1.0%

Mixed
Housing
Types

155 1.6% 120,000 2.0% 43,000 1.9%

Few Housing
Units 181 1.9% 6,000 0.1% 42,000 1.8%
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Figure F.14: Miami-Fort Lauderdale-Pompano Beach, FL MSA housing type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.15: Minneapolis Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 7,833 40.6% 589,000 17.2% 87,000 5.1%

Single-Family 4,865 25.2% 762,000 22.2% 186,000 11.0%

Mixed
Single-Family 4,512 23.4% 1096,000 31.9% 428,000 25.4%

Multifamily:
Small

Building
214 1.1% 87,000 2.5% 59,000 3.5%

Multifamily:
Large

Building
526 2.7% 346,000 10.1% 570,000 33.7%

Multifamily:
Mixed Types 951 4.9% 473,000 13.8% 323,000 19.1%

Mobile
Homes 76 0.4% 14,000 0.4% 5,000 0.3%

Mixed
Housing
Types

238 1.2% 64,000 1.9% 30,000 1.7%

Few Housing
Units 86 0.4% 1,000 0% 3,000 0.2%
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Figure F.15: Minneapolis-St. Paul-Bloomington, MN-WI MSA housing type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.16: New York Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 13,265 42.1% 2,871,000 14.9% 735,000 9.1%

Single-Family 6,421 20.4% 1,998,000 10.4% 711,000 8.8%

Mixed
Single-Family 5,311 16.9% 2,336,000 12.1% 1,037,000 12.9%

Multifamily:
Small

Building
2,496 7.9% 5,004,000 26.0% 1,158,000 14.4%

Multifamily:
Large

Building
1,184 3.8% 5,129,000 26.6% 3,396,000 42.3%

Multifamily:
Mixed Types 2,240 7.1% 1,859,000 9.7% 866,000 10.8%

Mobile
Homes 200 0.6% 17,000 0.1% 12,000 0.1%

Mixed
Housing
Types

88 0.3% 25,000 0.1% 16,000 0.2%

Few Housing
Units 312 1.0% 19,000 0.1% 102,000 1.3%
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Figure F.16: New York-Newark-Jersey City, NY-NJ-PA MSA housing type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.17: Philadelphia Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 6,058 30.3% 845,000 14.1% 217,000 8.4%

Single-Family 4,788 24.0% 876,000 14.6% 315,000 12.2%

Mixed
Single-Family 4,867 24.4% 1,198,000 19.9% 595,000 23.1%

Multifamily:
Small

Building
1,899 9.5% 2,192,000 36.5% 617,000 23.9%

Multifamily:
Large

Building
268 1.3% 193,000 3.2% 396,000 15.3%

Multifamily:
Mixed Types 1467 7.3% 630,000 10.5% 370,000 14.3%

Mobile
Homes 187 0.9% 22,000 0.4% 7,000 0.3%

Mixed
Housing
Types

155 0.8% 51,000 0.8% 20,000 0.8%

Few Housing
Units 281 1.4% 5,000 0.1% 47,000 1.8%
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Figure F.17: Philadelphia-Camden-Wilmington, PA-NJ-DE-MD MSA hous-
ing type neighborhood map. Philadelphia is just right of center and Wilming-
ton is at the lower left. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.18: Phoenix Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 5,224 40.0% 1,704,000 36.9% 274,000 15.1%

Single-Family 2,672 20.5% 779,000 16.9% 224,000 12.4%

Mixed
Single-Family 2,523 19.3% 951,000 20.6% 360,000 19.9%

Multifamily:
Small

Building
121 0.9% 87,000 1.9% 64,000 3.6%

Multifamily:
Large

Building
322 2.5% 182,000 3.9% 318,000 17.5%

Multifamily:
Mixed Types 806 6.2% 618,000 13.4% 434,000 24.0%

Mobile
Homes 900 6.9% 158,000 3.4% 47,000 2.6%

Mixed
Housing
Types

188 1.4% 117,000 2.5% 49,000 2.7%

Few Housing
Units 305 2.3% 21,000 0.5% 40,000 2.2%

482



Figure F.18: Phoenix-Mesa-Chandler, AZ MSA housing type neighborhood
map. The area shown is a 40-mile by 40-mile square. Roads andwater features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table F.19: Pittsburgh Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 3,673 21.2% 390,000 17.2% 94,000 9.0%

Single-Family 7,623 44.0% 710,000 31.3% 223,000 21.3%

Mixed
Single-Family 4,948 28.6% 789,000 34.7% 346,000 33.1%

Multifamily:
Small

Building
159 0.9% 91,000 4.0% 79,000 7.5%

Multifamily:
Large

Building
50 0.3% 40,000 1.7% 136,000 13%

Multifamily:
Mixed Types 484 2.8% 227,000 10.0% 152,000 14.5%

Mobile
Homes 175 1.0% 8,000 0.4% 2,000 0.2%

Mixed
Housing
Types

161 0.9% 16,000 0.7% 11,000 1.1%

Few Housing
Units 41 0.2% 1,000 0.03% 2,000 0.2%

484



Figure F.19: Pittsburgh, PA MSA housing type neighborhood map. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table F.20: Portland Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 2,092 21.4% 379,000 16.0% 49,000 4.8%

Single-Family 4,269 43.6% 597,000 25.2% 154,000 14.9%

Mixed
Single-Family 2,298 23.5% 748,000 31.5% 241,000 23.3%

Multifamily:
Small

Building
37 0.4% 38,000 1.6% 21,000 2.0%

Multifamily:
Large

Building
140 1.4% 103,000 4.3% 240,000 23.2%

Multifamily:
Mixed Types 497 5.1% 404,000 17.0% 266,000 25.7%

Mobile
Homes 198 2.0% 14,000 0.6% 8,000 0.8%

Mixed
Housing
Types

191 2.0% 90,000 3.8% 41,000 4.0%

Few Housing
Units 70 0.7% 1,000 0.03% 13,000 1.2%
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Figure F.20: Portland-Vancouver-Hillsboro, OR-WA MSA housing type
neighborhood map. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table F.21: Riverside Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 4,788 33.9% 1,506,000 34.0% 211,000 17.5%

Single-Family 3,457 24.5% 918,000 20.8% 208,000 17.3%

Mixed
Single-Family 3,041 21.5% 1086,000 24.6% 244,000 20.3%

Multifamily:
Small

Building
233 1.6% 98,000 2.2% 99,000 8.2%

Multifamily:
Large

Building
109 0.8% 50,000 1.1% 85,000 7.0%

Multifamily:
Mixed Types 703 5.0% 433,000 9.8% 221,000 18.3%

Mobile
Homes 1,332 9.4% 160,000 3.6% 42,000 3.5%

Mixed
Housing
Types

384 2.7% 164,000 3.7% 90,000 7.5%

Few Housing
Units 85 0.6% 7,000 0.2% 5,000 0.4%
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Figure F.21: Riverside-San Bernardino-Ontario, CA MSA housing type
neighborhood map. Ontario is to the center left, San Bernardino is to the
center right, and Riverside is to the lower center. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.

489



Table F.22: Sacramento Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 2,759 38.6% 608,000 26.9% 95,000 12.7%

Single-Family 2,106 29.5% 587,000 25.9% 121,000 16.3%

Mixed
Single-Family 1,380 19.3% 589,000 26.0% 191,000 25.7%

Multifamily:
Small

Building
95 1.3% 64,000 2.8% 46,000 6.2%

Multifamily:
Large

Building
74 1.0% 34,000 1.5% 60,000 8.0%

Multifamily:
Mixed Types 367 5.1% 304,000 13.4% 172,000 23.1%

Mobile
Homes 87 1.2% 10,000 0.5% 28,000 3.8%

Mixed
Housing
Types

167 2.3% 66,000 2.9% 21,000 2.9%

Few Housing
Units 106 1.5% 0 0% 10,000 1.4%
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Figure F.22: Sacramento-Roseville-Folsom, CAMSA housing type neighbor-
hood map. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table F.23: Salt Lake City Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 777 29.2% 332,000 28.2% 58,000 9.8%

Single-Family 703 26.5% 273,000 23.2% 68,000 11.4%

Mixed
Single-Family 638 24.0% 286,000 24.4% 115,000 19.3%

Multifamily:
Small

Building
15 0.6% 11,000 1.0% 7,000 1.2%

Multifamily:
Large

Building
86 3.2% 50,000 4.2% 123,000 20.8%

Multifamily:
Mixed Types 344 12.9% 196,000 16.7% 198,000 33.4%

Mobile
Homes 8 0.3% 8,000 0.7% 1,000 0.2%

Mixed
Housing
Types

24 0.9% 17,000 1.5% 9,000 1.5%

Few Housing
Units 62 2.3% 1,000 0.1% 14,000 2.4%
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Figure F.23: Salt Lake City, UT MSA housing type neighborhood map. The
area shown is a 40-mile by 40-mile square. Roads and water features by Sta-
men Design used under Creative Commons CC BY 3.0 license.
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Table F.24: San Diego Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 1,795 26.3% 417,000 13.0% 55,000 4.6%

Single-Family 1,840 26.9% 464,000 14.5% 122,000 10.2%

Mixed
Single-Family 1,618 23.7% 900,000 28.1% 288,000 23.9%

Multifamily:
Small

Building
221 3.2% 229,000 7.2% 97,000 8.1%

Multifamily:
Large

Building
204 3.0% 249,000 7.8% 221,000 18.3%

Multifamily:
Mixed Types 732 10.7% 775,000 24.2% 349,000 29.0%

Mobile
Homes 157 2.3% 38,000 1.2% 14,000 1.1%

Mixed
Housing
Types

157 2.3% 123,000 3.8% 40,000 3.4%

Few Housing
Units 108 1.6% 4,000 0.1% 18,000 1.5%
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Figure F.24: San Diego-Chula Vista-Carlsbad, CA MSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table F.25: San Francisco Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 2,134 30.4% 693,000 14.9% 139,000 6.5%

Single-Family 1,663 23.7% 756,000 16.3% 187,000 8.7%

Mixed
Single-Family 1,479 21.0% 1,106,000 23.8% 358,000 16.7%

Multifamily:
Small

Building
380 5.4% 644,000 13.9% 228,000 10.7%

Multifamily:
Large

Building
264 3.8% 472,000 10.2% 714,000 33.4%

Multifamily:
Mixed Types 827 11.8% 902,000 19.4% 431,000 20.1%

Mobile
Homes 78 1.1% 20,000 0.4% 31,000 1.5%

Mixed
Housing
Types

58 0.8% 51,000 1.1% 19,000 0.9%

Few Housing
Units 145 2.1% 3,000 0.1% 31,000 1.5%
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Figure F.25: San Francisco-Oakland-Berkeley, CAMSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table F.26: San Jose Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 887 28.7% 362,000 18.3% 78,000 7.9%

Single-Family 804 26.0% 306,000 15.5% 71,000 7.1%

Mixed
Single-Family 663 21.5% 453,000 23.0% 166,000 16.7%

Multifamily:
Small

Building
93 3.0% 93,000 4.7% 57,000 5.7%

Multifamily:
Large

Building
140 4.5% 167,000 8.5% 252,000 25.2%

Multifamily:
Mixed Types 361 11.7% 499,000 25.3% 282,000 28.3%

Mobile
Homes 52 1.7% 27,000 1.4% 53,000 5.3%

Mixed
Housing
Types

70 2.3% 68,000 3.4% 37,000 3.7%

Few Housing
Units 17 0.6% 0 0% 1,000 0.07%
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Figure F.26: San Jose-Sunnyvale-Santa Clara, CA MSA housing type neigh-
borhood map. The area shown is a 40-mile by 40-mile square. Roads and
water features by Stamen Design used under Creative Commons CC BY 3.0
license.
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Table F.27: Seattle Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 3,321 28.4% 749,000 19.9% 120,000 7.1%

Single-Family 3,974 33.9% 863,000 22.9% 150,000 8.8%

Mixed
Single-Family 2,707 23.1% 917,000 24.4% 300,000 17.7%

Multifamily:
Small

Building
114 1.0% 68,000 1.8% 31,000 1.8%

Multifamily:
Large

Building
317 2.7% 356,000 9.5% 598,000 35.3%

Multifamily:
Mixed Types 922 7.9% 705,000 18.7% 411,000 24.2%

Mobile
Homes 100 0.9% 17,000 0.5% 39,000 2.3%

Mixed
Housing
Types

196 1.7% 88,000 2.3% 43,000 2.5%

Few Housing
Units 61 0.5% 1,000 0.02% 5,000 0.3%

500



Figure F.27: Seattle-Tacoma-Bellevue, WAMSA housing type neighborhood
map. Seattle is in the upper center and Tacoma is to the lower left. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Table F.28: St. Louis Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 5,544 33.4% 674,000 25.1% 184,000 15%

Single-Family 6,028 36.3% 839,000 31.2% 265,000 21.7%

Mixed
Single-Family 3,820 23.0% 741,000 27.6% 362,000 29.6%

Multifamily:
Small

Building
263 1.6% 128,000 4.8% 62,000 5.1%

Multifamily:
Large

Building
59 0.4% 47,000 1.8% 123,000 10.0%

Multifamily:
Mixed Types 482 2.9% 215,000 8.0% 203,000 16.6%

Mobile
Homes 192 1.2% 17,000 0.6% 11,000 0.9%

Mixed
Housing
Types

156 0.9% 25,000 0.9% 13,000 1.0%

Few Housing
Units 43 0.3% 0 0% 1,000 0.06%
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Figure F.28: St. Louis, MO-IL MSA housing type neighborhood map. The
area shown is a 40-mile by 40-mile square. Roads and water features by Sta-
men Design used under Creative Commons CC BY 3.0 license.
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Table F.29: Tampa Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 1,646 15.6% 513,000 17.0% 67,000 5.6%

Single-Family 2,370 22.5% 621,000 20.6% 162,000 13.6%

Mixed
Single-Family 3,118 29.6% 865,000 28.7% 313,000 26.3%

Multifamily:
Small

Building
211 2% 122,000 4.1% 49,000 4.1%

Multifamily:
Large

Building
326 3.1% 180,000 6.0% 204,000 17.1%

Multifamily:
Mixed Types 744 7.1% 374,000 12.4% 255,000 21.4%

Mobile
Homes 1,650 15.7% 192,000 6.4% 64,000 5.4%

Mixed
Housing
Types

354 3.4% 139,000 4.6% 50,000 4.2%

Few Housing
Units 106 1% 4,000 0.1% 27,000 2.3%
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Figure F.29: Tampa-St. Petersburg-Clearwater, FL MSA housing type neigh-
borhood map. Tampa is to the upper right and St. Petersburg is to the lower
left. The area shown is a 40-mile by 40-mile square. Roads and water features
by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table F.30: Washington Distribution of Population and Jobs by Housing Type

Housing Type Hexes % of
Hexes Population % of

Pop. Jobs % of
Jobs

Pure
Single-Family 9,566 47.6% 1,246,000 20.6% 203,000 7.5%

Single-Family 3,902 19.4% 756,000 12.5% 191,000 7.0%

Mixed
Single-Family 2,970 14.8% 1007,000 16.6% 327,000 12%

Multifamily:
Small

Building
1,350 6.7% 1,169,000 19.3% 430,000 15.8%

Multifamily:
Large

Building
670 3.3% 935,000 15.4% 1,106,000 40.6%

Multifamily:
Mixed Types 1,356 6.8% 901,000 14.9% 410,000 15.0%

Mobile
Homes 47 0.2% 7,000 0.1% 12,000 0.5%

Mixed
Housing
Types

93 0.5% 33,000 0.5% 17,000 0.6%

Few Housing
Units 128 0.6% 2,000 0.03% 27,000 1%
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Figure F.30: Washington-Arlington-Alexandria, DC-VA-MD-WV MSA
housing type neighborhood map. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Appendix G: Methodology and Scripts for Constructing Typologies

Once data was collected to characterize the hex cells, the hex cell neighborhoods

were typologized using, a k-means non-hierarchical clustering analysis (Steinley (2006),

Royall and Wortmann (2015)) as discussed in Chapter 3. This analysis was performed

with R scripts using the cluster library and the kmeans function’s MacQueen cluster-

ing algorithm. The source code for these scripts can be found in UMBC’s ScholarWorks

repository.

For the clustering analyses, all hex cells in all CBSAs were combined into a single

data set, and cells located on military bases, cells containing no developed land, and cells

with activity densities (the sum of population and job densities) below 100 activity units

per square mile were removed1.

Initially, it was planned to create clusters through a two-step process, with clusters

based solely on density and connectivity data created first, and then a second clustering

step based on land use data performed separately on each density-and-connectivity clus-

ter. Section G.1 discusses the process of producing the first step density-and-connectivity

clusters.
1The density cut-off was selected as one-fifth of the minimum density for a tract to be included in a

Census Urban Area or Urban Cluster. It also corresponds to 16 activity units per hex cell.
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However, it became clear that this approach added significant arbitrariness into the

process, since the number of density-and-connectivity clusters, the number of land use

clusters each density-and-connectivity was divided into, and the final grouping of clusters

for use in the Chapter 3 metro area typology were all independently chosen.

As a result, a new approach—described in Section G.2—was used to generate the

final clusters. Clusters were generated in a single step using activity-and-connectivity,

land use, and housing type variables. It was necessary to increase the density cut-off to

500 activity units per square mile to make this computationally tractable: this resulted in

a total of 765,058 hexes to cluster.
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G.1 Density and Connectivity Clustering

Density-and-connectivity clusters were created using a pair of scripts. First, the

FirstAnalysis-3-MakeIntensityClusters.R script loaded the hex cell characteriza-

tion shapefile produced in Chapter 2 and created activity density, percent developed land,

and percent ideal walkshed variables. Cells with activity densities less than 100 activity

units per square mile were removed and z-scores were calculated for the three clustering

variables.

Once the z-scores were prepared, the kmeans function was used to produce so-

lutions with one to twenty-five clusters. For each value of k, 50 random seeds were

used to increase the chance that the solution found was the global maximum. The script

FirstAnalysis-4-AnalyzeIntensityClusters.Rwas then used to produce summaries

of each cluster solution for use in selecting a number of clusters to use.

Summaries were produced for each set of clusters with minimum, first quartile, me-

dian, third quartile, and maximum values of the activity density, percent developed land,

and percent ideal walkshed for each cluster. In all cases, the lowest-density hexes (which

were by far the most numerous) were sorted primarily by percent ideal walkshed while the

highest-density hexes (which were nearly all in high-connectivity areas) were primarily

sorted by density.
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The seventeen-cluster solution—in which 91% of variation is between clusters—

was finally settled on as the best choice for number of clusters since it gave reasonable

density breaks and broke most density levels into high-connectivity and low-connectivity

clusters. The clusters of the seventeen-cluster solution can be found listed in Table 3.1 on

page 133

The final component of the script imports a CSV file of new cluster numbers based

on cluster size—recall that the numbering of k-means clusters is arbitrary and non-reproducible—

and appends these new cluster numbers to the cells of the hex cell shapefile.
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G.2 Density, Connectivity, Land Use, and Housing Clustering

The inadequacy of the multi-step clustering approach led to the decision to create a

single set of clusters based on ten variables representing density, connectivity, land use,

and housing. The use of three times as many variables significantly increased computa-

tional time so, to make the process tractable, it was necessary to reduce the number of

neighborhoods included.

Only the 765,085 hex cell neighborhoods with activity densities of at least 500 ac-

tivity units per square mile were included in this clustering process. While this density

cut-off is higher than I would have preferred, it is the density cut-off the Census uses for

the fringes of urban areas and urban clusters, and it is far lower than the densities generally

considered necessary for walkability or effective public transit.

Besides the computational benefit of including fewer neighborhoods, using this den-

sity cut-off made it possible to make use of the recommendation of Royall and Wortmann

(2015) that the number of clusters should be roughly
√
n/2 where n is the number of data

points. Although
√

765085/2 is 618.49, this method only gives a rough estimate of the ideal

number of clusters, and I decided to use k = 600 as a nearby round number that placed

89.8% of variation between clusters.

The script FirstAnalysis-5-MakeUseClusters.R establishes the ten variables

used for clustering: activity density; percentages of activity units in each of retail, edmeds,

office, and industrial jobs (percent of activity that is residents is constrained by these); per-

centages of housing units that are single-family detached homes, row houses or apartments
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of less than ten units, and apartments of more than ten units (percent of housing units that

are mobile homes is constrained by these), percent developed land, and percent ideal walk-

shed.

Neighborhoods with activity densities of less than 500 activity units per square mile

are dropped and z-scores are created for each variable, as in the density-and-connectivity

clustering and the kmeans function is used to find 600 clusters using the MacQueen algo-

rithm and 50 randomly-selected sets of seed clusters.

In the next step, the script FirstAnalysis-6-AnalyzeUseClusters.R generates

a summary of the values of the variables and their standard deviations for each cluster,

allowing the clusters to be characterized. The summary file was then analyzed inMicrosoft

Excel to classify hex types as to their land use, housing type, density, and connectivity,

based on the criteria described in Tables 3.2–3.6 on pages 136–140 In addition, hexes were

assigned to the twenty-two neighborhood types listed in Table 3.7 on page 144.

Once clusters were assigned categories in Excel, the resulting spreadsheet was im-

ported to R by the script FirstAnalysis-7-ExportUseClusters.R and the cluster as-

signments and categories were joined to the national hex shapefile, producing the shapefile

used for the metro area typologies and to produce the neighborhood typology maps shown

in Appendix H.
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G.3 Initial Metro Area Clustering

Once neighborhood clusters were established, the next step was to develop clusters

of metro areas based on the types of neighborhood they contained and the fractions of

their residents living and working in each neighborhood type. However, to calculate the

populations and numbers of jobs in each metro area, it was necessary to import all hexes

in each metro area, rather than the hexes above a density cut-off that were used in the

neighborhood typology.

The script SecondAnalysis-1-MakeCSV.R begins by loading themetro area neigh-

borhood characterization shape files and combining them into a single large shapefile. The

hexes with clusters attached produced by FirstAnalysis-7-ExportUseClusters.R are

then loaded and joined to the complete hex shapefile, and the low-density hexes excluded

from the cluster analysis are listed as falling into the two low-density neighborhood cate-

gories.

An additional step of correcting the assignments of some high-density hexes is nec-

essary because the small number of neighborhoods at high densities lead the cluster anal-

ysis of high-density hexes to depend almost solely on density and not use type. All hexes

with densities of at least 30,000 activity units per square mile were checked by hand and

reassigned to a more appropriate neighborhood type if necessary.
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In addition, the hexes with invalid population densities due to the Census block

group cropping error discussed in Section C.3 are removed to keep them from skewing

the high-density hex data. Once these corrections are made, the resulting shapefile is

written to disk and the script goes on to process data for use in the metro area clustering

analysis.

Because the twenty-two categories that neighborhood clusters were initially grouped

into turned out to be too many for viable clustering analysis, they are grouped together

into the six categories shown in Table 3.9 on page 149 before having jobs and population

summed for each metro area.

Three files are then saved to disk: one containing eight population and jobs variables

selected for use in metro area clustering and covering all 926 metro areas, one with twelve

variables, showing population and jobs each for each neighborhood type in thirty-five

metro areas, and one that sums the same twelve variables over all 926 metro areas.

The first of these files is then loaded by the SecondAnalysis-2-MakeClusters.R

script, which uses the data in a pair of two-step clustering procedures to identify clusters

of metro areas by their distributions of jobs and of population in different medium and

high-density neighborhood types.

For job clusters, the first stage produces six clusters based on the fractions of jobs

in CBD and high-density commercial hexes. Each of these clusters is then sub-divided

into further clusters based on four variables: the fractions of jobs in CBD, high-density

commercial, medium-density commercial, and high or medium-density residential hexes.
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For population clusters, the first stage produces four clusters based on the fraction

of populations in high-density commercial or residential and CBD hexes. Each of these

clusters is then sub-divided further into clusters based on this variable and three others:

the fractions of jobs in medium-density large-apartment hexes, in medium-density small-

apartment and row house hexes, and in medium-density commercial hexes. Finally, the

list of metro areas with both cluster and subcluster assignments is written to disk.
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Appendix H: Neighborhood Typology Maps

This appendix contains maps of land use and intensity (measured as walkshed-

adjusted density) types based on my neighborhood typology discussed in Chapter 3. Land

use types are as described in Table 3.5 on page 3.5 and intensity levels from “Extremely-

High Intensity” to “Very-Low Intensity” are as described in Table 3.4 on page 3.4.

All the maps are at the same scale, and show a 40-mile by 40-mile square, which

means that outlying parts of larger metro areas may be left out, while views of smaller

metro areas may include areas outside the MSA limits. Maps are shown for the twenty

largest metropolitan statistical areas in the US, along with fifteen additional metropolitan

statistical areas that were selected because they are particularly interesting: they are unusu-

ally dense for their size, have rapid transit or light rail, or are representatives of interesting

types from my metro areas typology, discussed in Chapter 3.
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Figure H.1: Atlanta-Sandy Springs-Alpharetta, GA MSA map of land use
and intensity, measured by walkshed-adjusted density. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.2: Austin-Round Rock-Georgetown, TX MSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.3: Baltimore-Columbia-Towson, MD MSA map of land use and in-
tensity, measured by walkshed-adjusted density. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Figure H.4: Boston-Cambridge-Newton, MA-NH MSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.5: Charlotte-Concord-Gastonia, NC-SC MSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.6: Chicago-Naperville-Elgin, IL-IN-WI MSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.7: Cleveland-Elyria, OH MSA map of land use and intensity, mea-
sured by walkshed-adjusted density. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Figure H.8: Dallas-Fort Worth-Arlington, TX MSA map of land use and in-
tensity, measured by walkshed-adjusted density. Downtown Dallas is at the
lower right and downtown Fort Worth is at the far lower left. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Figure H.9: Denver-Aurora-Lakewood, CO MSA map of land use and in-
tensity, measured by walkshed-adjusted density. Boulder (not in the Denver
MSA) is at the upper left. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Figure H.10: Detroit-Warren-Dearborn, MI MSA map of land use and inten-
sity, measured by walkshed-adjusted density. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Figure H.11: Urban Honolulu, HI MSA map of land use and intensity, mea-
sured by walkshed-adjusted density. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Figure H.12: Houston-The Woodlands-Sugar Land, TX MSA map of land
use and intensity, measured by walkshed-adjusted density. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Figure H.13: Los Angeles-Long Beach-Anaheim, CA MSA map of land use
and intensity, measured by walkshed-adjusted density. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.14: Louisville-Jefferson County, KY-IN MSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.15: Madison, WI MSA map of land use and intensity, measured by
walkshed-adjusted density. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Figure H.16: Miami-Fort Lauderdale-Pompano Beach, FL MSA map of land
use and intensity, measured by walkshed-adjusted density. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Figure H.17: Milwaukee-Waukesha, WI MSA map of land use and intensity,
measured by walkshed-adjusted density. The area shown is a 40-mile by 40-
mile square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Figure H.18: Minneapolis-St. Paul-Bloomington, MN-WI MSA map of land
use and intensity, measured by walkshed-adjusted density. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Figure H.19: New York-Newark-Jersey City, NY-NJ-PA MSA map of land
use and intensity, measured by walkshed-adjusted density. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Figure H.20: Philadelphia-Camden-Wilmington, PA-NJ-DE-MD MSA map
of land use and intensity, measured by walkshed-adjusted density. Philadel-
phia is just right of center andWilmington is at the lower left. The area shown
is a 40-mile by 40-mile square. Roads and water features by Stamen Design
used under Creative Commons CC BY 3.0 license.
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Figure H.21: Phoenix-Mesa-Chandler, AZ MSA map of land use and inten-
sity, measured by walkshed-adjusted density. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.

538



Figure H.22: Pittsburgh, PAMSAmap of land use and intensity, measured by
walkshed-adjusted density. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Figure H.23: Portland-Vancouver-Hillsboro, OR-WA MSA map of land use
and intensity, measured by walkshed-adjusted density. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.24: Riverside-San Bernardino-Ontario, CA MSA map of land use
and intensity, measured by walkshed-adjusted density. Ontario is to the center
left, San Bernardino is to the center right, and Riverside is to the lower center.
The area shown is a 40-mile by 40-mile square. Roads and water features by
Stamen Design used under Creative Commons CC BY 3.0 license.
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Figure H.25: Rochester, MN MSA map of land use and intensity, measured
by walkshed-adjusted density. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.

542



Figure H.26: Sacramento-Roseville-Folsom, CA MSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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FigureH.27: Salt Lake City, UTMSAmap of land use and intensity, measured
by walkshed-adjusted density. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Figure H.28: San Diego-Chula Vista-Carlsbad, CA MSA map of land use
and intensity, measured by walkshed-adjusted density. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.29: San Francisco-Oakland-Berkeley, CA MSA map of land use
and intensity, measured by walkshed-adjusted density. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.30: San Jose-Sunnyvale-Santa Clara, CAMSA map of land use and
intensity, measured by walkshed-adjusted density. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Figure H.31: Seattle-Tacoma-Bellevue, WA MSA map of land use and inten-
sity, measured by walkshed-adjusted density. Seattle is in the upper center and
Tacoma is to the lower left. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Figure H.32: St. Louis, MO-ILMSAmap of land use and intensity, measured
by walkshed-adjusted density. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Figure H.33: Tampa-St. Petersburg-Clearwater, FL MSA map of land use
and intensity, measured by walkshed-adjusted density. Tampa is to the upper
right and St. Petersburg is to the lower left. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Figure H.34: Champaign-Urbana, IL MSA map of land use and intensity,
measured by walkshed-adjusted density. The area shown is a 40-mile by 40-
mile square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.

551



Figure H.35: Washington-Arlington-Alexandria, DC-VA-MD-WVMSAmap
of land use and intensity, measured by walkshed-adjusted density. The area
shown is a 40-mile by 40-mile square. Roads and water features by Stamen
Design used under Creative Commons CC BY 3.0 license.
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Appendix I: Metro Area Typology Tables

Tables I.1 on page 555 and I.2 on page 583 list all 926 CBSAs studied along with

their job cluster and population cluster assignments and the fractions of jobs and residents

in the neighborhood types used to typologize them. For the jobs clusters, the neighborhood

types are:

• CBD Jobs—the fraction of theMSA’s jobs in neighborhood type 00–Major Central

Business District

• HD Jobs— the fraction of the MSA’s jobs in neighborhood types 12–High-Density

Retail, 14–High-Density Eds/Meds, and 16–High Density Office

• MD Jobs — the fraction of the MSA’s jobs in neighborhood types 09–Medium-

Density Mixed Use and 17–Medium-Density Office

• Resid. Jobs — the fraction of the MSA’s jobs in neighborhood types 02–Very

High Density Residential, 03–High Density Residential, 04–MediumDensity Large

Apartments, and 05-Medium-Density Small Apartments

For the population clusters, the neighborhood types are:

• HD Pop. — the fraction of the MSA’s population in neighborhood types 02–Very

High Density Residential or 03–High Density Residential
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• MD Large Apt. Pop. — the fraction of the MSA’s population in neighborhood

type 04–Medium Density Large Apartments

• MDSmall Apt. Pop. — the fraction of the MSA’s population in neighborhood type

05-Medium-Density Small Apartments

• MD Comm. Pop. — the fraction of the MSA’s population in any of the other

neighborhood types included in the jobs data.

See Table 3.7 on page 144 for descriptions of the numbered neighborhood types.
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Table I.1: List of CBSA Job Clusters and Distributions

CBSA Name Total Jobs ID CBD
Jobs

HD
Jobs

MD
Jobs

Resid.
Jobs

New York-Newark-Jersey City, NY-NJ-PA 8,034,000 1 24.4% 5.0% 3.3% 21.8%

Urban Honolulu, HI 362,000 2a 8.2% 13.9% 6.2% 25.8%

Chicago-Naperville-Elgin, IL-IN-WI 4,104,000 2b 12.5% 5.3% 5.7% 8.6%

Boston-Cambridge-Newton, MA-NH 2,419,000 2b 7.8% 12.4% 5.5% 10.5%

San Francisco-Oakland-Berkeley, CA 2,140,000 2b 13.9% 10.3% 11.6% 12.8%

Washington-Arlington-Alexandria, DC-VA-MD-WV 2,723,000 2c 8.2% 17.6% 11.7% 5.2%

Seattle-Tacoma-Bellevue, WA 1,697,000 2c 7.2% 11.0% 10.3% 4.8%

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 2,587,000 3a 4.7% 8.6% 3.8% 7.3%

Pittsburgh, PA 1,048,000 3a 4.2% 9.8% 3.3% 2.1%

Los Angeles-Long Beach-Anaheim, CA 5,599,000 3b 3.0% 11.7% 11.7% 14.5%

San Jose-Sunnyvale-Santa Clara, CA 997,000 3b 2.5% 12.4% 15.0% 5.5%

Minneapolis-St. Paul-Bloomington, MN-WI 1,695,000 3c 3.3% 10.0% 7.8% 2.0%

Denver-Aurora-Lakewood, CO 1,300,000 3c 1.8% 12.1% 9.9% 1.7%

Baltimore-Columbia-Towson, MD 1,156,000 3c 2.0% 10.4% 5.4% 4.0%

Houston-The Woodlands-Sugar Land, TX 2,608,000 3d 2.9% 7.9% 10.0% 2.2%

Charlotte-Concord-Gastonia, NC-SC 1,071,000 3d 2.6% 4.8% 4.8% 0.0%

Austin-Round Rock-Georgetown, TX 837,000 3d 3.1% 6.1% 11.8% 0.5%

Dallas-Fort Worth-Arlington, TX 3,176,000 4a 0.8% 10.8% 9.5% 0.6%

Rochester, MN 104,000 4b 0.0% 32.4% 0.0% 0.0%

Bloomington, IL 74,000 4b 0.0% 25.2% 3.7% 0.1%

Bloomsburg-Berwick, PA 36,000 4b 0.0% 22.1% 0.0% 0.0%

Wisconsin Rapids-Marshfield, WI 35,000 4b 0.0% 18.4% 0.0% 0.0%

Sayre, PA 20,000 4b 0.0% 19.3% 0.0% 0.0%

Las Vegas-Henderson-Paradise, NV 867,000 4c 0.0% 15.9% 2.7% 3.9%

Milwaukee-Waukesha, WI 785,000 4c 0.0% 11.0% 5.6% 5.2%

Hartford-East Hartford-Middletown, CT 552,000 4c 0.0% 11.5% 2.5% 2.1%

New Orleans-Metairie, LA 488,000 4c 0.0% 16.7% 5.0% 2.8%

Rochester, NY 442,000 4c 0.0% 12.6% 1.9% 1.8%

New Haven-Milford, CT 333,000 4c 0.0% 14.7% 1.3% 2.4%

Syracuse, NY 249,000 4c 0.0% 12.6% 3.7% 1.9%

Duluth, MN-WI 100,000 4c 0.0% 16.3% 2.3% 2.1%

Champaign-Urbana, IL 68,000 4c 0.0% 9.8% 3.8% 5.6%

Ithaca, NY 42,000 4c 0.0% 12.7% 6.1% 2.8%

Atlanta-Sandy Springs-Alpharetta, GA 2,397,000 4d 0.0% 16.1% 6.4% 0.2%

Continued on next page
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CBSA Name Total Jobs ID CBD HD
Jobs

MD
Jobs

HD/
MD
Resid

Phoenix-Mesa-Chandler, AZ 1,813,000 4d 0.0% 10.4% 9.2% 0.8%

St. Louis, MO-IL 1,228,000 4d 0.0% 10.3% 3.8% 0.7%

Orlando-Kissimmee-Sanford, FL 1,162,000 4d 0.0% 15.7% 3.8% 0.1%

Portland-Vancouver-Hillsboro, OR-WA 1,038,000 4d 0.0% 10.8% 7.4% 1.9%

Indianapolis-Carmel-Anderson, IN 942,000 4d 0.0% 11.9% 4.8% 0.5%

Nashville-Davidson–Murfreesboro–Franklin, TN 849,000 4d 0.0% 10.4% 9.2% 0.0%

Des Moines-West Des Moines, IA 331,000 4d 0.0% 13.0% 5.5% 0.0%

Durham-Chapel Hill, NC 264,000 4d 0.0% 14.4% 7.7% 0.0%

Spokane-Spokane Valley, WA 204,000 4d 0.0% 11.4% 8.3% 0.0%

South Bend-Mishawaka, IN-MI 120,000 4d 0.0% 10.2% 4.3% 0.0%

Charleston, WV 99,000 4d 0.0% 12.0% 4.2% 0.0%

Traverse City, MI 55,000 4d 0.0% 10.6% 5.4% 0.0%

Cleveland-Elyria, OH 917,000 4e 0.0% 11.8% 2.4% 0.6%

Louisville-Jefferson County, KY-IN 581,000 4e 0.0% 10.2% 3.3% 0.1%

Winston-Salem, NC 238,000 4e 0.0% 13.7% 0.6% 0.0%

Peoria, IL 153,000 4e 0.0% 14.3% 1.1% 0.0%

Roanoke, VA 143,000 4e 0.0% 12.9% 1.9% 0.0%

Gainesville, FL 106,000 4e 0.0% 11.5% 0.0% 0.0%

Atlantic City-Hammonton, NJ 103,000 4e 0.0% 13.0% 1.9% 1.4%

Killeen-Temple, TX 94,000 4e 0.0% 10.8% 1.5% 0.0%

Lebanon, NH-VT 87,000 4e 0.0% 14.7% 0.0% 0.0%

Saginaw, MI 74,000 4e 0.0% 10.4% 1.5% 0.0%

Concord, NH 67,000 4e 0.0% 9.9% 0.0% 0.0%

Alexandria, LA 49,000 4e 0.0% 10.6% 2.8% 0.0%

Albany, GA 46,000 4e 0.0% 10.2% 0.0% 0.0%

Grand Forks, ND-MN 42,000 4e 0.0% 10.7% 0.0% 0.0%

Cape Girardeau, MO-IL 38,000 4e 0.0% 12.7% 0.0% 0.0%

Quincy, IL-MO 32,000 4e 0.0% 11.4% 3.5% 0.0%

Plattsburgh, NY 23,000 4e 0.0% 12.0% 0.0% 0.0%

Mason City, IA 23,000 4e 0.0% 10.1% 0.0% 0.0%

Oneonta, NY 19,000 4e 0.0% 14.6% 0.0% 0.0%

Thomasville, GA 18,000 4e 0.0% 12.9% 0.0% 0.0%

Batesville, AR 17,000 4e 0.0% 14.6% 0.0% 0.0%

Easton, MD 17,000 4e 0.0% 13.6% 0.0% 0.0%

Continued on next page
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CBSA Name Total Jobs ID CBD HD
Jobs

MD
Jobs

HD/
MD
Resid

Mountain Home, AR 13,000 4e 0.0% 12.7% 0.0% 0.0%

Miami-Fort Lauderdale-Pompano Beach, FL 2,296,000 5a 1.0% 7.5% 6.7% 5.3%

Jacksonville, FL 630,000 5a 0.9% 7.9% 5.2% 0.0%

Sacramento-Roseville-Folsom, CA 747,000 5b 0.0% 5.2% 8.1% 1.8%

Grand Rapids-Kentwood, MI 532,000 5b 0.0% 6.0% 8.2% 1.1%

Omaha-Council Bluffs, NE-IA 429,000 5b 0.0% 4.9% 10.2% 0.1%

Anchorage, AK 156,000 5b 0.0% 7.9% 15.4% 0.4%

Eugene-Springfield, OR 129,000 5b 0.0% 4.6% 9.4% 2.1%

Fargo, ND-MN 124,000 5b 0.0% 7.4% 12.9% 0.0%

Burlington-South Burlington, VT 100,000 5b 0.0% 3.8% 9.6% 1.8%

Topeka, KS 89,000 5b 0.0% 6.1% 7.5% 0.0%

Olympia-Lacey-Tumwater, WA 76,000 5b 0.0% 4.8% 9.5% 0.0%

La Crosse-Onalaska, WI-MN 68,000 5b 0.0% 8.1% 9.9% 1.7%

Bismarck, ND 58,000 5b 0.0% 4.7% 11.9% 0.0%

Missoula, MT 53,000 5b 0.0% 5.8% 10.3% 0.5%

Pittsfield, MA 50,000 5b 0.0% 5.8% 6.2% 0.0%

Santa Fe, NM 47,000 5b 0.0% 5.6% 10.8% 0.0%

Pueblo, CO 46,000 5b 0.0% 6.6% 8.0% 0.0%

San Diego-Chula Vista-Carlsbad, CA 1,205,000 5c 0.0% 7.1% 10.1% 5.9%

Providence-Warwick, RI-MA 619,000 5c 0.0% 6.6% 2.8% 9.5%

Buffalo-Cheektowaga, NY 463,000 5c 0.0% 3.9% 6.4% 3.4%

Bridgeport-Stamford-Norwalk, CT 387,000 5c 0.0% 6.1% 6.1% 5.9%

Albany-Schenectady-Troy, NY 351,000 5c 0.0% 8.6% 5.6% 3.5%

Worcester, MA-CT 329,000 5c 0.0% 9.1% 0.5% 5.2%

Allentown-Bethlehem-Easton, PA-NJ 320,000 5c 0.0% 8.3% 0.0% 4.2%

Springfield, MA 251,000 5c 0.0% 7.7% 6.2% 4.8%

Portland-South Portland, ME 235,000 5c 0.0% 6.6% 4.2% 3.2%

Manchester-Nashua, NH 189,000 5c 0.0% 6.7% 3.3% 5.2%

Trenton-Princeton, NJ 178,000 5c 0.0% 9.1% 5.4% 4.6%

Reading, PA 161,000 5c 0.0% 5.2% 1.7% 5.5%

Santa Maria-Santa Barbara, CA 153,000 5c 0.0% 4.1% 8.8% 5.7%

Erie, PA 109,000 5c 0.0% 7.5% 3.0% 3.5%

Iowa City, IA 65,000 5c 0.0% 4.1% 0.0% 5.6%

Lewiston-Auburn, ME 46,000 5c 0.0% 5.9% 6.4% 5.1%

Continued on next page
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Longview, WA 31,000 5c 0.0% 7.8% 0.0% 7.9%

Detroit-Warren-Dearborn, MI 1,795,000 5d 0.0% 7.1% 6.8% 0.6%

Tampa-St. Petersburg-Clearwater, FL 1,194,000 5d 0.0% 8.1% 6.3% 0.3%

Cincinnati, OH-KY-IN 954,000 5d 0.0% 7.9% 3.6% 0.6%

Kansas City, MO-KS 943,000 5d 0.0% 7.0% 5.7% 0.2%

Columbus, OH 901,000 5d 0.0% 9.2% 5.5% 1.3%

San Antonio-New Braunfels, TX 842,000 5d 0.0% 7.8% 5.8% 0.2%

Salt Lake City, UT 594,000 5d 0.0% 8.4% 8.5% 0.2%

Richmond, VA 551,000 5d 0.0% 7.3% 3.4% 1.1%

Oklahoma City, OK 502,000 5d 0.0% 8.9% 3.8% 0.0%

Birmingham-Hoover, AL 432,000 5d 0.0% 7.5% 5.3% 0.6%

Columbia, SC 310,000 5d 0.0% 7.4% 5.8% 0.0%

Little Rock-North Little Rock-Conway, AR 288,000 5d 0.0% 9.4% 3.9% 0.5%

Boise City, ID 276,000 5d 0.0% 7.9% 3.9% 0.0%

Augusta-Richmond County, GA-SC 183,000 5d 0.0% 8.1% 5.3% 0.0%

Fort Wayne, IN 183,000 5d 0.0% 7.2% 7.3% 0.0%

Springfield, MO 181,000 5d 0.0% 9.2% 6.4% 0.0%

Lincoln, NE 148,000 5d 0.0% 8.8% 3.0% 1.2%

Sioux Falls, SD 139,000 5d 0.0% 9.3% 7.9% 0.3%

Evansville, IN-KY 138,000 5d 0.0% 7.2% 5.7% 0.8%

Cedar Rapids, IA 131,000 5d 0.0% 9.4% 4.1% 0.8%

Ann Arbor, MI 128,000 5d 0.0% 8.4% 5.1% 2.1%

Tallahassee, FL 120,000 5d 0.0% 6.7% 3.5% 0.0%

Amarillo, TX 100,000 5d 0.0% 7.2% 3.9% 0.0%

Macon-Bibb County, GA 86,000 5d 0.0% 9.0% 9.9% 0.0%

Springfield, IL 85,000 5d 0.0% 9.2% 9.5% 0.0%

Binghamton, NY 79,000 5d 0.0% 9.4% 3.9% 1.8%

Jackson, MI 51,000 5d 0.0% 6.6% 5.3% 0.0%

Flagstaff, AZ 46,000 5d 0.0% 8.0% 3.6% 0.0%

Memphis, TN-MS-AR 554,000 5e 0.0% 7.7% 1.2% 0.0%

Tulsa, OK 387,000 5e 0.0% 9.1% 1.1% 0.0%

Greenville-Anderson, SC 349,000 5e 0.0% 6.1% 3.0% 0.0%

Greensboro-High Point, NC 322,000 5e 0.0% 5.8% 0.7% 0.0%

Dayton-Kettering, OH 321,000 5e 0.0% 6.6% 1.1% 0.0%
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Akron, OH 289,000 5e 0.0% 7.2% 1.1% 0.0%

Chattanooga, TN-GA 214,000 5e 0.0% 7.3% 2.2% 0.0%

Ogden-Clearfield, UT 206,000 5e 0.0% 6.2% 0.0% 0.0%

Rockford, IL 126,000 5e 0.0% 6.6% 0.7% 0.0%

Kalamazoo-Portage, MI 109,000 5e 0.0% 6.7% 3.1% 0.5%

Tyler, TX 90,000 5e 0.0% 9.5% 0.0% 0.0%

Ocala, FL 87,000 5e 0.0% 7.1% 0.0% 0.0%

Gainesville, GA 80,000 5e 0.0% 8.2% 0.0% 0.0%

College Station-Bryan, TX 72,000 5e 0.0% 7.1% 0.0% 0.0%

Joplin, MO 68,000 5e 0.0% 5.8% 0.0% 0.0%

Morgantown, WV 54,000 5e 0.0% 6.8% 0.0% 0.4%

Muskegon, MI 52,000 5e 0.0% 7.1% 0.0% 0.0%

Abilene, TX 51,000 5e 0.0% 7.7% 0.0% 0.0%

Jonesboro, AR 48,000 5e 0.0% 6.7% 0.0% 0.0%

Owensboro, KY 45,000 5e 0.0% 9.0% 0.0% 0.0%

Johnstown, PA 45,000 5e 0.0% 7.8% 0.0% 0.0%

Wichita Falls, TX 42,000 5e 0.0% 5.9% 0.0% 0.0%

Muncie, IN 39,000 5e 0.0% 9.3% 0.0% 0.0%

San Angelo, TX 38,000 5e 0.0% 8.7% 0.0% 0.0%

Farmington, NM 37,000 5e 0.0% 5.9% 0.0% 0.0%

Kalispell, MT 37,000 5e 0.0% 7.9% 0.0% 0.0%

Brunswick, GA 34,000 5e 0.0% 6.5% 0.0% 0.0%

Rome, GA 33,000 5e 0.0% 8.8% 0.0% 0.0%

Great Falls, MT 31,000 5e 0.0% 6.3% 0.0% 0.0%

Roseburg, OR 31,000 5e 0.0% 5.7% 0.0% 0.0%

Keene, NH 27,000 5e 0.0% 5.9% 0.0% 0.0%

Salina, KS 27,000 5e 0.0% 9.6% 0.0% 0.0%

Fairbanks, AK 25,000 5e 0.0% 7.8% 0.0% 0.0%

Rutland, VT 24,000 5e 0.0% 8.7% 0.0% 0.0%

Pine Bluff, AR 23,000 5e 0.0% 7.1% 0.0% 0.0%

Hutchinson, KS 22,000 5e 0.0% 7.2% 0.0% 0.0%

Laconia, NH 21,000 5e 0.0% 6.7% 0.0% 0.0%

Galesburg, IL 15,000 5e 0.0% 8.9% 0.0% 0.0%

Pittsburg, KS 13,000 5e 0.0% 8.7% 0.0% 0.0%
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Centralia, IL 11,000 5e 0.0% 8.3% 0.0% 0.0%

Virginia Beach-Norfolk-Newport News, VA-NC 607,000 5f 0.0% 5.6% 5.0% 0.7%

Raleigh-Cary, NC 541,000 5f 0.0% 5.0% 3.4% 0.0%

Baton Rouge, LA 338,000 5f 0.0% 3.4% 2.5% 0.3%

Knoxville, TN 334,000 5f 0.0% 3.1% 1.9% 0.1%

Fresno, CA 315,000 5f 0.0% 3.4% 3.1% 1.9%

Albuquerque, NM 308,000 5f 0.0% 5.1% 5.8% 0.0%

Tucson, AZ 299,000 5f 0.0% 3.4% 2.1% 1.2%

Charleston-North Charleston, SC 285,000 5f 0.0% 5.6% 4.5% 0.0%

Harrisburg-Carlisle, PA 272,000 5f 0.0% 4.7% 1.1% 2.4%

Toledo, OH 264,000 5f 0.0% 5.5% 1.0% 0.0%

North Port-Sarasota-Bradenton, FL 259,000 5f 0.0% 3.8% 3.6% 0.0%

Wichita, KS 259,000 5f 0.0% 3.5% 3.0% 0.5%

Lancaster, PA 227,000 5f 0.0% 3.8% 2.4% 3.4%

Colorado Springs, CO 222,000 5f 0.0% 4.1% 0.8% 0.7%

Jackson, MS 222,000 5f 0.0% 4.6% 1.1% 0.0%

Provo-Orem, UT 203,000 5f 0.0% 4.3% 4.6% 2.8%

Lakeland-Winter Haven, FL 202,000 5f 0.0% 3.9% 3.5% 0.0%

McAllen-Edinburg-Mission, TX 200,000 5f 0.0% 4.7% 2.5% 0.0%

Reno, NV 200,000 5f 0.0% 5.6% 2.8% 1.2%

Lansing-East Lansing, MI 183,000 5f 0.0% 4.2% 2.2% 0.2%

Palm Bay-Melbourne-Titusville, FL 179,000 5f 0.0% 4.4% 2.0% 0.0%

Deltona-Daytona Beach-Ormond Beach, FL 172,000 5f 0.0% 3.7% 0.0% 0.0%

Asheville, NC 168,000 5f 0.0% 4.9% 5.1% 0.0%

Modesto, CA 157,000 5f 0.0% 4.2% 0.0% 0.3%

Green Bay, WI 154,000 5f 0.0% 3.4% 2.5% 0.9%

Canton-Massillon, OH 150,000 5f 0.0% 3.2% 2.8% 0.0%

Savannah, GA 146,000 5f 0.0% 3.2% 5.8% 1.8%

Shreveport-Bossier City, LA 140,000 5f 0.0% 3.6% 3.1% 0.0%

Salem, OR 129,000 5f 0.0% 3.5% 2.4% 1.2%

Naples-Marco Island, FL 128,000 5f 0.0% 3.3% 0.0% 0.1%

Lubbock, TX 117,000 5f 0.0% 3.3% 0.0% 0.3%

Huntington-Ashland, WV-KY-OH 113,000 5f 0.0% 4.7% 3.2% 0.7%

Brownsville-Harlingen, TX 107,000 5f 0.0% 5.1% 0.0% 0.0%
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Kennewick-Richland, WA 102,000 5f 0.0% 4.5% 0.0% 0.0%

Longview, TX 100,000 5f 0.0% 3.6% 3.3% 0.0%

Waco, TX 98,000 5f 0.0% 4.5% 3.9% 1.4%

St. Cloud, MN 98,000 5f 0.0% 3.8% 5.5% 0.0%

Columbus, GA-AL 91,000 5f 0.0% 3.6% 0.0% 0.0%

San Luis Obispo-Paso Robles, CA 89,000 5f 0.0% 3.5% 4.0% 0.6%

Greeley, CO 88,000 5f 0.0% 3.8% 0.0% 0.0%

Medford, OR 78,000 5f 0.0% 3.3% 3.0% 2.3%

Columbia, MO 77,000 5f 0.0% 3.3% 3.5% 0.0%

Tupelo, MS 76,000 5f 0.0% 4.1% 1.7% 0.0%

Barnstable Town, MA 74,000 5f 0.0% 3.8% 0.0% 0.0%

Monroe, LA 73,000 5f 0.0% 3.4% 3.2% 0.0%

Wausau-Weston, WI 73,000 5f 0.0% 4.5% 0.0% 1.1%

Bellingham, WA 69,000 5f 0.0% 4.1% 4.7% 0.0%

Johnson City, TN 65,000 5f 0.0% 4.8% 0.0% 0.0%

Kahului-Wailuku-Lahaina, HI 65,000 5f 0.0% 3.5% 0.0% 0.0%

Chico, CA 65,000 5f 0.0% 6.2% 2.1% 1.7%

Bowling Green, KY 63,000 5f 0.0% 3.4% 3.6% 1.6%

Terre Haute, IN 57,000 5f 0.0% 4.3% 0.0% 0.0%

Niles, MI 54,000 5f 0.0% 3.9% 0.0% 0.0%

Rapid City, SD 54,000 5f 0.0% 3.9% 4.7% 0.0%

Grand Junction, CO 53,000 5f 0.0% 5.4% 0.0% 0.0%

Yuma, AZ 48,000 5f 0.0% 4.1% 0.0% 1.0%

St. Joseph, MO-KS 48,000 5f 0.0% 5.3% 0.0% 0.0%

Mankato, MN 45,000 5f 0.0% 4.6% 0.0% 0.0%

Decatur, IL 44,000 5f 0.0% 5.2% 0.0% 0.0%

Punta Gorda, FL 43,000 5f 0.0% 5.4% 0.0% 0.0%

Kankakee, IL 37,000 5f 0.0% 4.7% 0.0% 0.0%

Victoria, TX 32,000 5f 0.0% 4.4% 0.0% 0.0%

Steamboat Springs, CO 12,000 5f 0.0% 4.9% 0.0% 0.0%

Riverside-San Bernardino-Ontario, CA 1,208,000 6a 0.0% 2.7% 2.8% 0.7%

Madison, WI 310,000 6a 0.0% 2.9% 11.5% 2.2%

Lexington-Fayette, KY 230,000 6a 0.0% 1.5% 3.4% 1.5%

Scranton–Wilkes-Barre, PA 227,000 6a 0.0% 2.2% 4.5% 2.7%
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Stockton, CA 207,000 6a 0.0% 2.2% 2.4% 3.0%

Poughkeepsie-Newburgh-Middletown, NY 206,000 6a 0.0% 2.5% 1.1% 4.2%

Youngstown-Warren-Boardman, OH-PA 186,000 6a 0.0% 1.4% 0.0% 0.0%

Lafayette, LA 175,000 6a 0.0% 2.2% 0.0% 0.0%

Huntsville, AL 175,000 6a 0.0% 2.5% 7.4% 0.0%

Santa Rosa-Petaluma, CA 173,000 6a 0.0% 1.6% 3.9% 0.2%

Pensacola-Ferry Pass-Brent, FL 171,000 6a 0.0% 1.7% 0.0% 0.0%

York-Hanover, PA 165,000 6a 0.0% 2.1% 1.8% 2.0%

Davenport-Moline-Rock Island, IA-IL 158,000 6a 0.0% 1.9% 1.9% 0.0%

Mobile, AL 155,000 6a 0.0% 2.3% 3.5% 0.0%

Corpus Christi, TX 146,000 6a 0.0% 2.6% 6.7% 2.3%

Beaumont-Port Arthur, TX 131,000 6a 0.0% 2.0% 0.0% 0.0%

Elkhart-Goshen, IN 126,000 6a 0.0% 1.7% 0.0% 0.0%

Port St. Lucie, FL 122,000 6a 0.0% 2.2% 1.1% 0.9%

Flint, MI 117,000 6a 0.0% 2.9% 2.1% 0.0%

Vallejo, CA 110,000 6a 0.0% 2.9% 2.9% 0.1%

Kingsport-Bristol, TN-VA 103,000 6a 0.0% 2.9% 0.0% 0.0%

Utica-Rome, NY 93,000 6a 0.0% 2.0% 4.3% 2.8%

Yakima, WA 88,000 6a 0.0% 3.1% 0.0% 1.8%

Oshkosh-Neenah, WI 86,000 6a 0.0% 1.1% 2.4% 0.6%

Waterloo-Cedar Falls, IA 78,000 6a 0.0% 2.9% 0.0% 0.0%

Lafayette-West Lafayette, IN 76,000 6a 0.0% 2.4% 0.0% 1.8%

Eau Claire, WI 74,000 6a 0.0% 2.8% 0.0% 0.0%

Bend, OR 69,000 6a 0.0% 2.5% 3.9% 0.0%

Dalton, GA 58,000 6a 0.0% 2.4% 0.0% 0.0%

Janesville-Beloit, WI 57,000 6a 0.0% 3.1% 0.0% 0.0%

Bangor, ME 57,000 6a 0.0% 2.7% 3.4% 0.0%

Burlington, NC 55,000 6a 0.0% 2.7% 3.7% 0.0%

Prescott Valley-Prescott, AZ 51,000 6a 0.0% 2.3% 0.0% 0.0%

Jefferson City, MO 50,000 6a 0.0% 2.4% 0.0% 0.0%

Battle Creek, MI 48,000 6a 0.0% 1.9% 0.0% 0.0%

Lebanon, PA 43,000 6a 0.0% 2.9% 0.0% 2.1%

Fremont, NE 14,000 6a 0.0% 2.6% 0.0% 0.0%

El Paso, TX 262,000 6b 0.0% 1.2% 6.8% 1.8%
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Fayetteville-Springdale-Rogers, AR 209,000 6b 0.0% 1.2% 9.2% 0.0%

Boulder, CO 147,000 6b 0.0% 0.0% 9.5% 1.4%

Billings, MT 81,000 6b 0.0% 0.0% 7.1% 0.0%

Charlottesville, VA 76,000 6b 0.0% 0.0% 12.3% 0.0%

Athens-Clarke County, GA 62,000 6b 0.0% 0.0% 5.0% 0.8%

Dubuque, IA 55,000 6b 0.0% 0.0% 6.6% 0.0%

Bloomington, IN 50,000 6b 0.0% 0.0% 5.7% 0.0%

Bozeman, MT 48,000 6b 0.0% 0.0% 6.3% 0.0%

Williamsport, PA 43,000 6b 0.0% 0.0% 6.5% 0.0%

Findlay, OH 42,000 6b 0.0% 0.0% 10.4% 0.0%

Glens Falls, NY 38,000 6b 0.0% 0.0% 9.3% 0.0%

Casper, WY 34,000 6b 0.0% 0.0% 5.4% 0.0%

Parkersburg-Vienna, WV 34,000 6b 0.0% 0.0% 11.3% 0.0%

Glenwood Springs, CO 33,000 6b 0.0% 0.0% 5.3% 0.0%

Key West, FL 32,000 6b 0.0% 0.0% 10.2% 1.6%

Gadsden, AL 32,000 6b 0.0% 0.0% 6.0% 0.0%

Corning, NY 30,000 6b 0.0% 0.0% 10.2% 0.0%

Winona, MN 23,000 6b 0.0% 0.0% 6.0% 0.0%

Stillwater, OK 21,000 6b 0.0% 0.0% 6.0% 0.0%

Durango, CO 19,000 6b 0.0% 0.0% 15.3% 0.0%

Jackson, WY-ID 18,000 6b 0.0% 0.0% 15.3% 0.0%

Paragould, AR 17,000 6b 0.0% 0.0% 22.0% 0.0%

Los Alamos, NM 13,000 6b 0.0% 0.0% 24.2% 0.0%

Ketchikan, AK 8,000 6b 0.0% 0.0% 9.9% 0.0%

State College, PA 44,000 6c 0.0% 0.0% 0.0% 10.5%

Rexburg, ID 15,000 6c 0.0% 0.0% 9.6% 9.2%

Butte-Silver Bow, MT 14,000 6c 0.0% 0.0% 0.0% 12.5%

Salinas, CA 141,000 6d 0.0% 0.0% 2.2% 2.0%

Hagerstown-Martinsburg, MD-WV 90,000 6d 0.0% 0.0% 0.0% 2.8%

Santa Cruz-Watsonville, CA 82,000 6d 0.0% 0.0% 6.0% 3.2%

Redding, CA 51,000 6d 0.0% 0.0% 0.0% 3.0%

Kingston, NY 45,000 6d 0.0% 0.0% 0.0% 2.9%

El Centro, CA 43,000 6d 0.0% 0.0% 0.0% 3.4%

Jamestown-Dunkirk-Fredonia, NY 38,000 6d 0.0% 0.0% 0.0% 2.4%
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Elmira, NY 29,000 6d 0.0% 0.0% 0.0% 4.2%

Corvallis, OR 28,000 6d 0.0% 0.0% 6.8% 5.0%

Meadville, PA 26,000 6d 0.0% 0.0% 0.0% 4.0%

Indiana, PA 26,000 6d 0.0% 0.0% 0.0% 3.6%

Sunbury, PA 23,000 6d 0.0% 0.0% 0.0% 6.4%

Auburn, NY 19,000 6d 0.0% 0.0% 0.0% 6.4%

Lewistown, PA 14,000 6d 0.0% 0.0% 0.0% 6.2%

Oxnard-Thousand Oaks-Ventura, CA 270,000 6e 0.0% 0.5% 0.0% 1.3%

Bakersfield, CA 227,000 6e 0.0% 0.6% 1.9% 0.5%

Cape Coral-Fort Myers, FL 212,000 6e 0.0% 0.6% 1.7% 0.0%

Myrtle Beach-Conway-North Myrtle Beach, SC-NC 137,000 6e 0.0% 0.0% 0.0% 0.0%

Hickory-Lenoir-Morganton, NC 132,000 6e 0.0% 0.0% 0.0% 0.0%

Visalia, CA 127,000 6e 0.0% 0.0% 0.0% 1.0%

Salisbury, MD-DE 125,000 6e 0.0% 0.0% 0.0% 0.0%

Montgomery, AL 125,000 6e 0.0% 0.0% 1.6% 0.0%

Gulfport-Biloxi, MS 123,000 6e 0.0% 0.8% 3.8% 0.0%

Spartanburg, SC 120,000 6e 0.0% 0.0% 1.8% 0.0%

Fort Collins, CO 120,000 6e 0.0% 0.0% 3.9% 0.3%

Appleton, WI 114,000 6e 0.0% 0.0% 4.8% 0.0%

Fayetteville, NC 109,000 6e 0.0% 0.0% 0.0% 0.0%

Wilmington, NC 101,000 6e 0.0% 1.0% 1.9% 0.0%

Crestview-Fort Walton Beach-Destin, FL 97,000 6e 0.0% 0.0% 0.0% 0.0%

Norwich-New London, CT 93,000 6e 0.0% 0.0% 0.0% 0.5%

Lake Charles, LA 88,000 6e 0.0% 0.0% 0.0% 0.0%

Fort Smith, AR-OK 88,000 6e 0.0% 0.0% 0.0% 0.0%

Midland, TX 84,000 6e 0.0% 0.0% 0.0% 0.0%

Lynchburg, VA 83,000 6e 0.0% 0.0% 3.2% 0.0%

Tuscaloosa, AL 78,000 6e 0.0% 0.0% 1.8% 0.0%

Laredo, TX 75,000 6e 0.0% 0.0% 2.6% 0.4%

Houma-Thibodaux, LA 69,000 6e 0.0% 0.0% 0.0% 0.0%

Florence, SC 68,000 6e 0.0% 0.0% 0.0% 0.0%

Clarksville, TN-KY 68,000 6e 0.0% 0.0% 0.0% 0.0%

Panama City, FL 67,000 6e 0.0% 0.0% 0.0% 0.0%

Sioux City, IA-NE-SD 67,000 6e 0.0% 0.0% 4.6% 0.0%
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Racine, WI 65,000 6e 0.0% 0.0% 4.2% 0.7%

Jackson, TN 64,000 6e 0.0% 0.0% 0.0% 0.0%

Napa, CA 64,000 6e 0.0% 0.0% 3.3% 0.0%

Daphne-Fairhope-Foley, AL 62,000 6e 0.0% 0.0% 0.0% 0.0%

Hilton Head Island-Bluffton, SC 61,000 6e 0.0% 0.0% 0.0% 0.0%

Merced, CA 58,000 6e 0.0% 0.0% 0.0% 0.0%

Idaho Falls, ID 58,000 6e 0.0% 0.0% 0.0% 0.0%

Odessa, TX 57,000 6e 0.0% 0.0% 0.0% 0.0%

Las Cruces, NM 55,000 6e 0.0% 0.0% 3.1% 0.0%

Sheboygan, WI 55,000 6e 0.0% 0.0% 0.0% 0.0%

Hilo, HI 55,000 6e 0.0% 0.0% 0.0% 0.0%

St. George, UT 55,000 6e 0.0% 0.0% 0.0% 0.0%

Harrisonburg, VA 54,000 6e 0.0% 0.0% 0.0% 0.0%

Wheeling, WV-OH 53,000 6e 0.0% 0.0% 3.9% 0.0%

Hattiesburg, MS 53,000 6e 0.0% 0.0% 0.0% 0.0%

Greenville, NC 53,000 6e 0.0% 0.0% 0.0% 0.0%

Altoona, PA 52,000 6e 0.0% 0.0% 0.0% 0.0%

Bremerton-Silverdale-Port Orchard, WA 52,000 6e 0.0% 0.0% 0.0% 0.0%

Torrington, CT 52,000 6e 0.0% 0.0% 0.0% 0.0%

Chambersburg-Waynesboro, PA 50,000 6e 0.0% 0.0% 0.0% 1.3%

Coeur d’Alene, ID 49,000 6e 0.0% 0.0% 3.5% 0.0%

Texarkana, TX-AR 49,000 6e 0.0% 0.0% 0.0% 0.0%

Blacksburg-Christiansburg, VA 49,000 6e 0.0% 0.0% 0.0% 0.0%

Dover, DE 48,000 6e 0.0% 0.0% 0.0% 0.0%

Ottawa, IL 48,000 6e 0.0% 0.0% 0.0% 0.0%

Vineland-Bridgeton, NJ 47,000 6e 0.0% 0.0% 0.0% 1.3%

Rocky Mount, NC 47,000 6e 0.0% 0.0% 0.0% 0.0%

Decatur, AL 46,000 6e 0.0% 0.0% 0.0% 0.0%

Dothan, AL 46,000 6e 0.0% 0.0% 0.0% 0.0%

Augusta-Waterville, ME 46,000 6e 0.0% 0.0% 0.0% 0.0%

Sebastian-Vero Beach, FL 45,000 6e 0.0% 0.0% 0.0% 0.0%

Mansfield, OH 45,000 6e 0.0% 0.0% 0.0% 0.0%

Logan, UT-ID 45,000 6e 0.0% 0.0% 2.5% 0.0%

Florence-Muscle Shoals, AL 44,000 6e 0.0% 0.0% 2.8% 0.0%
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Lima, OH 44,000 6e 0.0% 0.0% 0.0% 0.0%

Columbus, IN 44,000 6e 0.0% 0.0% 0.0% 0.0%

Carbondale-Marion, IL 44,000 6e 0.0% 0.0% 0.0% 1.7%

Auburn-Opelika, AL 43,000 6e 0.0% 0.0% 0.0% 0.0%

Pottsville, PA 43,000 6e 0.0% 0.0% 0.0% 1.3%

London, KY 43,000 6e 0.0% 0.0% 0.0% 0.0%

East Stroudsburg, PA 42,000 6e 0.0% 0.0% 0.0% 0.0%

Wenatchee, WA 42,000 6e 0.0% 0.0% 4.8% 0.0%

Twin Falls, ID 42,000 6e 0.0% 0.0% 0.0% 0.0%

Warner Robins, GA 42,000 6e 0.0% 0.0% 0.0% 0.0%

Valdosta, GA 42,000 6e 0.0% 0.0% 0.0% 0.0%

Wooster, OH 42,000 6e 0.0% 0.0% 0.0% 0.0%

Morristown, TN 42,000 6e 0.0% 0.0% 0.0% 0.0%

Springfield, OH 41,000 6e 0.0% 0.0% 0.0% 0.0%

LaGrange, GA-AL 41,000 6e 0.0% 0.0% 0.0% 0.0%

Lake Havasu City-Kingman, AZ 41,000 6e 0.0% 0.0% 0.0% 0.0%

Fond du Lac, WI 41,000 6e 0.0% 0.0% 0.0% 0.0%

Sevierville, TN 41,000 6e 0.0% 0.0% 0.0% 0.0%

Paducah, KY-IL 41,000 6e 0.0% 0.0% 0.0% 0.0%

Ames, IA 40,000 6e 0.0% 0.0% 0.0% 0.0%

Staunton, VA 40,000 6e 0.0% 0.0% 0.0% 0.0%

Cleveland, TN 39,000 6e 0.0% 0.0% 0.0% 0.0%

Monroe, MI 38,000 6e 0.0% 0.0% 0.0% 0.0%

Lawrence, KS 38,000 6e 0.0% 0.0% 4.1% 0.0%

Beckley, WV 38,000 6e 0.0% 0.0% 0.0% 0.0%

Sherman-Denison, TX 37,000 6e 0.0% 0.0% 0.0% 0.0%

Albany-Lebanon, OR 37,000 6e 0.0% 0.0% 3.3% 0.0%

Mount Vernon-Anacortes, WA 37,000 6e 0.0% 0.0% 0.0% 0.0%

Holland, MI 37,000 6e 0.0% 0.0% 0.0% 0.0%

Elizabethtown-Fort Knox, KY 37,000 6e 0.0% 0.0% 0.0% 0.0%

Madera, CA 36,000 6e 0.0% 0.0% 0.0% 0.0%

Eureka-Arcata, CA 36,000 6e 0.0% 0.0% 0.0% 0.0%

Kokomo, IN 36,000 6e 0.0% 0.0% 0.0% 0.0%

Warsaw, IN 36,000 6e 0.0% 0.0% 0.0% 0.0%
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Manhattan, KS 35,000 6e 0.0% 0.0% 0.0% 0.0%

Sumter, SC 35,000 6e 0.0% 0.0% 0.0% 0.0%

Whitewater, WI 34,000 6e 0.0% 0.0% 0.0% 0.0%

Michigan City-La Porte, IN 34,000 6e 0.0% 0.0% 0.0% 0.0%

Yuba City, CA 34,000 6e 0.0% 0.0% 0.0% 0.0%

Midland, MI 33,000 6e 0.0% 0.0% 0.0% 0.0%

Cheyenne, WY 33,000 6e 0.0% 0.0% 0.0% 0.0%

Clarksburg, WV 33,000 6e 0.0% 0.0% 0.0% 0.0%

Hot Springs, AR 33,000 6e 0.0% 0.0% 0.0% 0.0%

Grand Island, NE 33,000 6e 0.0% 0.0% 0.0% 0.0%

Goldsboro, NC 33,000 6e 0.0% 0.0% 0.0% 0.0%

Danville, VA 33,000 6e 0.0% 0.0% 0.0% 0.0%

Anniston-Oxford, AL 33,000 6e 0.0% 0.0% 0.0% 0.0%

Cookeville, TN 33,000 6e 0.0% 0.0% 0.0% 0.0%

Weirton-Steubenville, WV-OH 32,000 6e 0.0% 0.0% 0.0% 0.0%

Pinehurst-Southern Pines, NC 32,000 6e 0.0% 0.0% 0.0% 0.0%

Wilson, NC 32,000 6e 0.0% 0.0% 0.0% 0.0%

Hammond, LA 32,000 6e 0.0% 0.0% 0.0% 0.0%

Tullahoma-Manchester, TN 32,000 6e 0.0% 0.0% 0.0% 0.0%

Meridian, MS 32,000 6e 0.0% 0.0% 0.0% 0.0%

Albertville, AL 32,000 6e 0.0% 0.0% 0.0% 0.0%

New Philadelphia-Dover, OH 31,000 6e 0.0% 0.0% 0.0% 0.0%

Lumberton, NC 31,000 6e 0.0% 0.0% 0.0% 0.0%

Pocatello, ID 31,000 6e 0.0% 0.0% 0.0% 0.0%

Heber, UT 30,000 6e 0.0% 0.0% 0.0% 0.0%

Brainerd, MN 30,000 6e 0.0% 0.0% 0.0% 0.0%

Beaver Dam, WI 30,000 6e 0.0% 0.0% 0.0% 0.0%

Jacksonville, NC 30,000 6e 0.0% 0.0% 0.0% 0.0%

Manitowoc, WI 30,000 6e 0.0% 0.0% 0.0% 0.0%

Baraboo, WI 30,000 6e 0.0% 0.0% 0.0% 0.0%

Sandusky, OH 30,000 6e 0.0% 0.0% 0.0% 0.0%

Stevens Point, WI 29,000 6e 0.0% 0.0% 0.0% 0.0%

Lufkin, TX 29,000 6e 0.0% 0.0% 0.0% 0.0%

Gettysburg, PA 29,000 6e 0.0% 0.0% 0.0% 0.0%
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Hanford-Corcoran, CA 29,000 6e 0.0% 0.0% 0.0% 0.0%

Watertown-Fort Atkinson, WI 29,000 6e 0.0% 0.0% 0.0% 0.0%

Russellville, AR 29,000 6e 0.0% 0.0% 0.0% 0.0%

Bluefield, WV-VA 29,000 6e 0.0% 0.0% 0.0% 0.0%

Helena, MT 29,000 6e 0.0% 0.0% 0.0% 0.0%

Jasper, IN 28,000 6e 0.0% 0.0% 0.0% 0.0%

New Bern, NC 28,000 6e 0.0% 0.0% 0.0% 0.0%

Cumberland, MD-WV 28,000 6e 0.0% 0.0% 0.0% 0.0%

Lawton, OK 28,000 6e 0.0% 0.0% 0.0% 0.0%

Homosassa Springs, FL 28,000 6e 0.0% 0.0% 0.0% 0.0%

Minot, ND 28,000 6e 0.0% 0.0% 0.0% 0.0%

Bay City, MI 28,000 6e 0.0% 0.0% 0.0% 0.0%

Zanesville, OH 28,000 6e 0.0% 0.0% 0.0% 0.0%

Hermiston-Pendleton, OR 27,000 6e 0.0% 0.0% 0.0% 0.0%

Watertown-Fort Drum, NY 27,000 6e 0.0% 0.0% 0.0% 0.0%

Richmond-Berea, KY 27,000 6e 0.0% 0.0% 0.0% 0.0%

Moses Lake, WA 27,000 6e 0.0% 0.0% 0.0% 0.0%

Shelby, NC 27,000 6e 0.0% 0.0% 0.0% 0.0%

Edwards, CO 27,000 6e 0.0% 0.0% 0.0% 0.0%

DuBois, PA 26,000 6e 0.0% 0.0% 0.0% 0.0%

California-Lexington Park, MD 26,000 6e 0.0% 0.0% 0.0% 0.0%

Ocean City, NJ 26,000 6e 0.0% 0.0% 0.0% 0.0%

Barre, VT 25,000 6e 0.0% 0.0% 0.0% 0.0%

Kapaa, HI 25,000 6e 0.0% 0.0% 0.0% 0.0%

Hobbs, NM 25,000 6e 0.0% 0.0% 0.0% 0.0%

Richmond, IN 25,000 6e 0.0% 0.0% 0.0% 0.0%

Cullman, AL 25,000 6e 0.0% 0.0% 0.0% 0.0%

Talladega-Sylacauga, AL 25,000 6e 0.0% 0.0% 0.0% 0.0%

Salem, OH 25,000 6e 0.0% 0.0% 0.0% 0.0%

Laurel, MS 24,000 6e 0.0% 0.0% 0.0% 0.0%

Marion, IN 24,000 6e 0.0% 0.0% 0.0% 0.0%

Branson, MO 24,000 6e 0.0% 0.0% 0.0% 0.0%

Sidney, OH 24,000 6e 0.0% 0.0% 0.0% 0.0%

Kearney, NE 24,000 6e 0.0% 0.0% 0.0% 0.0%
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Ashtabula, OH 24,000 6e 0.0% 0.0% 0.0% 0.0%

Ukiah, CA 24,000 6e 0.0% 0.0% 0.0% 0.0%

Fremont, OH 24,000 6e 0.0% 0.0% 0.0% 0.0%

New Castle, PA 24,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Airy, NC 24,000 6e 0.0% 0.0% 0.0% 0.0%

Lewiston, ID-WA 24,000 6e 0.0% 0.0% 0.0% 0.0%

Carlsbad-Artesia, NM 24,000 6e 0.0% 0.0% 0.0% 0.0%

Truckee-Grass Valley, CA 23,000 6e 0.0% 0.0% 0.0% 0.0%

Ogdensburg-Massena, NY 23,000 6e 0.0% 0.0% 0.0% 0.0%

Grants Pass, OR 23,000 6e 0.0% 0.0% 0.0% 0.0%

Sanford, NC 23,000 6e 0.0% 0.0% 0.0% 0.0%

Muskogee, OK 23,000 6e 0.0% 0.0% 0.0% 0.0%

The Villages, FL 23,000 6e 0.0% 0.0% 0.0% 0.0%

Orangeburg, SC 23,000 6e 0.0% 0.0% 0.0% 0.0%

Frankfort, KY 23,000 6e 0.0% 0.0% 0.0% 0.0%

Jefferson, GA 23,000 6e 0.0% 0.0% 0.0% 0.0%

Chillicothe, OH 23,000 6e 0.0% 0.0% 0.0% 0.0%

Charleston-Mattoon, IL 23,000 6e 0.0% 0.0% 0.0% 0.0%

Faribault-Northfield, MN 23,000 6e 0.0% 0.0% 0.0% 0.0%

Williston, ND 22,000 6e 0.0% 0.0% 0.0% 0.0%

Greeneville, TN 22,000 6e 0.0% 0.0% 0.0% 0.0%

Sebring-Avon Park, FL 22,000 6e 0.0% 0.0% 0.0% 0.0%

Ardmore, OK 22,000 6e 0.0% 0.0% 0.0% 0.0%

Danville, IL 22,000 6e 0.0% 0.0% 0.0% 0.0%

Marietta, OH 22,000 6e 0.0% 0.0% 0.0% 0.0%

Martinsville, VA 22,000 6e 0.0% 0.0% 0.0% 0.0%

Kinston, NC 22,000 6e 0.0% 0.0% 0.0% 0.0%

Walla Walla, WA 22,000 6e 0.0% 0.0% 0.0% 0.0%

Somerset, KY 21,000 6e 0.0% 0.0% 0.0% 0.0%

Marinette, WI-MI 21,000 6e 0.0% 0.0% 0.0% 0.0%

Marquette, MI 21,000 6e 0.0% 0.0% 0.0% 0.0%

Adrian, MI 21,000 6e 0.0% 0.0% 0.0% 0.0%

Willmar, MN 21,000 6e 0.0% 0.0% 0.0% 0.0%

Calhoun, GA 21,000 6e 0.0% 0.0% 0.0% 0.0%

Continued on next page

569



Table I.1 – Continued from previous page

CBSA Name Total Jobs ID CBD HD
Jobs

MD
Jobs

HD/
MD
Resid

Marion, OH 21,000 6e 0.0% 0.0% 0.0% 0.0%

Greenwood, SC 21,000 6e 0.0% 0.0% 0.0% 0.0%

Muscatine, IA 21,000 6e 0.0% 0.0% 0.0% 0.0%

Searcy, AR 21,000 6e 0.0% 0.0% 0.0% 0.0%

Enid, OK 21,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Pleasant, MI 20,000 6e 0.0% 0.0% 0.0% 0.1%

Fergus Falls, MN 20,000 6e 0.0% 0.0% 0.0% 0.0%

Norfolk, NE 20,000 6e 0.0% 0.0% 0.0% 0.0%

Elko, NV 20,000 6e 0.0% 0.0% 0.0% 0.0%

Gillette, WY 20,000 6e 0.0% 0.0% 0.0% 0.0%

Effingham, IL 20,000 6e 0.0% 0.0% 0.0% 0.0%

Seneca, SC 20,000 6e 0.0% 0.0% 0.0% 0.0%

Sierra Vista-Douglas, AZ 20,000 6e 0.0% 0.0% 0.0% 0.0%

Burlington, IA-IL 20,000 6e 0.0% 0.0% 0.0% 0.0%

Centralia, WA 19,000 6e 0.0% 0.0% 0.0% 0.0%

Carson City, NV 19,000 6e 0.0% 0.0% 0.0% 0.0%

Auburn, IN 19,000 6e 0.0% 0.0% 0.0% 0.0%

Aberdeen, SD 19,000 6e 0.0% 0.0% 0.0% 0.0%

Columbus, MS 19,000 6e 0.0% 0.0% 0.0% 0.0%

Owatonna, MN 19,000 6e 0.0% 0.0% 0.0% 0.0%

Statesboro, GA 19,000 6e 0.0% 0.0% 0.0% 0.0%

Opelousas, LA 19,000 6e 0.0% 0.0% 0.0% 0.0%

North Wilkesboro, NC 19,000 6e 0.0% 0.0% 0.0% 0.0%

Clinton, IA 19,000 6e 0.0% 0.0% 0.0% 0.0%

Lake City, FL 19,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Vernon, IL 19,000 6e 0.0% 0.0% 0.0% 0.0%

Olean, NY 19,000 6e 0.0% 0.0% 0.0% 0.0%

Paris, TX 18,000 6e 0.0% 0.0% 0.0% 0.0%

Wapakoneta, OH 18,000 6e 0.0% 0.0% 0.0% 0.0%

Somerset, PA 18,000 6e 0.0% 0.0% 0.0% 0.0%

Norwalk, OH 18,000 6e 0.0% 0.0% 0.0% 0.0%

Klamath Falls, OR 18,000 6e 0.0% 0.0% 0.0% 0.0%

Portsmouth, OH 18,000 6e 0.0% 0.0% 0.0% 0.0%

Fort Payne, AL 18,000 6e 0.0% 0.0% 0.0% 0.0%
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Roswell, NM 18,000 6e 0.0% 0.0% 0.0% 0.0%

Seymour, IN 18,000 6e 0.0% 0.0% 0.0% 0.0%

Breckenridge, CO 18,000 6e 0.0% 0.0% 0.0% 0.0%

Sturgis, MI 18,000 6e 0.0% 0.0% 0.0% 0.0%

Farmington, MO 18,000 6e 0.0% 0.0% 0.0% 0.0%

Red Wing, MN 18,000 6e 0.0% 0.0% 0.0% 0.0%

Morehead City, NC 18,000 6e 0.0% 0.0% 0.0% 0.0%

Gaffney, SC 18,000 6e 0.0% 0.0% 0.0% 0.0%

Dublin, GA 17,000 6e 0.0% 0.0% 0.0% 0.0%

Rock Springs, WY 17,000 6e 0.0% 0.0% 0.0% 0.0%

Poplar Bluff, MO 17,000 6e 0.0% 0.0% 0.0% 0.0%

Show Low, AZ 17,000 6e 0.0% 0.0% 0.0% 0.0%

Georgetown, SC 17,000 6e 0.0% 0.0% 0.0% 0.0%

Oxford, MS 17,000 6e 0.0% 0.0% 0.0% 0.0%

Bellefontaine, OH 17,000 6e 0.0% 0.0% 0.0% 0.0%

Shawnee, OK 17,000 6e 0.0% 0.0% 0.0% 0.0%

Bartlesville, OK 17,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Vernon, OH 17,000 6e 0.0% 0.0% 0.0% 0.0%

Fort Madison-Keokuk, IA-IL-MO 17,000 6e 0.0% 0.0% 0.0% 0.0%

Celina, OH 17,000 6e 0.0% 0.0% 0.0% 0.0%

Kendallville, IN 17,000 6e 0.0% 0.0% 0.0% 0.0%

Boone, NC 17,000 6e 0.0% 0.0% 0.0% 0.0%

Lewisburg, PA 17,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Pleasant, TX 17,000 6e 0.0% 0.0% 0.0% 0.0%

Hudson, NY 17,000 6e 0.0% 0.0% 0.0% 0.0%

Tiffin, OH 17,000 6e 0.0% 0.0% 0.0% 0.0%

Morgan City, LA 17,000 6e 0.0% 0.0% 0.0% 0.0%

Coos Bay, OR 16,000 6e 0.0% 0.0% 0.0% 0.0%

Plymouth, IN 16,000 6e 0.0% 0.0% 0.0% 0.0%

Batavia, NY 16,000 6e 0.0% 0.0% 0.0% 0.0%

Columbus, NE 16,000 6e 0.0% 0.0% 0.0% 0.0%

Athens, TN 16,000 6e 0.0% 0.0% 0.0% 0.0%

Nacogdoches, TX 16,000 6e 0.0% 0.0% 0.0% 0.0%

Ontario, OR-ID 16,000 6e 0.0% 0.0% 0.0% 0.0%
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Glasgow, KY 16,000 6e 0.0% 0.0% 0.0% 0.0%

Dickinson, ND 16,000 6e 0.0% 0.0% 0.0% 0.0%

Garden City, KS 16,000 6e 0.0% 0.0% 0.0% 0.0%

Sedalia, MO 16,000 6e 0.0% 0.0% 0.0% 0.0%

Douglas, GA 16,000 6e 0.0% 0.0% 0.0% 0.0%

Greenville, OH 16,000 6e 0.0% 0.0% 0.0% 0.0%

Crossville, TN 16,000 6e 0.0% 0.0% 0.0% 0.0%

Waycross, GA 16,000 6e 0.0% 0.0% 0.0% 0.0%

Gallup, NM 16,000 6e 0.0% 0.0% 0.0% 0.0%

Ashland, OH 16,000 6e 0.0% 0.0% 0.0% 0.0%

Pella, IA 16,000 6e 0.0% 0.0% 0.0% 0.0%

Sterling, IL 16,000 6e 0.0% 0.0% 0.0% 0.0%

Danville, KY 16,000 6e 0.0% 0.0% 0.0% 0.0%

Albemarle, NC 16,000 6e 0.0% 0.0% 0.0% 0.0%

Gardnerville Ranchos, NV 16,000 6e 0.0% 0.0% 0.0% 0.0%

Amsterdam, NY 16,000 6e 0.0% 0.0% 0.0% 0.0%

Roanoke Rapids, NC 16,000 6e 0.0% 0.0% 0.0% 0.0%

Burley, ID 15,000 6e 0.0% 0.0% 0.0% 0.0%

Vicksburg, MS 15,000 6e 0.0% 0.0% 0.0% 0.0%

Wilmington, OH 15,000 6e 0.0% 0.0% 0.0% 0.0%

Port Angeles, WA 15,000 6e 0.0% 0.0% 0.0% 0.0%

Forest City, NC 15,000 6e 0.0% 0.0% 0.0% 0.0%

Alice, TX 15,000 6e 0.0% 0.0% 0.0% 0.0%

El Dorado, AR 15,000 6e 0.0% 0.0% 0.0% 0.0%

Fort Dodge, IA 15,000 6e 0.0% 0.0% 0.0% 0.0%

Watertown, SD 15,000 6e 0.0% 0.0% 0.0% 0.0%

Ruston, LA 15,000 6e 0.0% 0.0% 0.0% 0.0%

Selinsgrove, PA 15,000 6e 0.0% 0.0% 0.0% 0.0%

Blytheville, AR 15,000 6e 0.0% 0.0% 0.0% 0.0%

Bennington, VT 15,000 6e 0.0% 0.0% 0.0% 0.0%

Cadillac, MI 15,000 6e 0.0% 0.0% 0.0% 0.0%

Alexandria, MN 15,000 6e 0.0% 0.0% 0.0% 0.0%

Fairmont, WV 15,000 6e 0.0% 0.0% 0.0% 0.0%

Bemidji, MN 15,000 6e 0.0% 0.0% 0.0% 0.0%
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Freeport, IL 15,000 6e 0.0% 0.0% 0.0% 0.0%

Oil City, PA 15,000 6e 0.0% 0.0% 0.0% 0.0%

Hannibal, MO 14,000 6e 0.0% 0.0% 0.0% 0.0%

Marshalltown, IA 14,000 6e 0.0% 0.0% 0.0% 0.0%

Aberdeen, WA 14,000 6e 0.0% 0.0% 0.0% 0.0%

Hutchinson, MN 14,000 6e 0.0% 0.0% 0.0% 0.0%

Menomonie, WI 14,000 6e 0.0% 0.0% 0.0% 0.0%

Shelbyville, TN 14,000 6e 0.0% 0.0% 0.0% 0.0%

Scottsbluff, NE 14,000 6e 0.0% 0.0% 0.0% 0.0%

Marion, NC 14,000 6e 0.0% 0.0% 0.0% 0.0%

Tifton, GA 14,000 6e 0.0% 0.0% 0.0% 0.0%

Kerrville, TX 14,000 6e 0.0% 0.0% 0.0% 0.0%

Bardstown, KY 14,000 6e 0.0% 0.0% 0.0% 0.0%

Dodge City, KS 14,000 6e 0.0% 0.0% 0.0% 0.0%

Gloversville, NY 14,000 6e 0.0% 0.0% 0.0% 0.0%

Kill Devil Hills, NC 14,000 6e 0.0% 0.0% 0.0% 0.0%

Greenville, MS 14,000 6e 0.0% 0.0% 0.0% 0.0%

Ottumwa, IA 14,000 6e 0.0% 0.0% 0.0% 0.0%

Cortland, NY 14,000 6e 0.0% 0.0% 0.0% 0.0%

Astoria, OR 14,000 6e 0.0% 0.0% 0.0% 0.0%

Madisonville, KY 14,000 6e 0.0% 0.0% 0.0% 0.0%

Starkville, MS 14,000 6e 0.0% 0.0% 0.0% 0.0%

Jasper, AL 14,000 6e 0.0% 0.0% 0.0% 0.0%

Elizabeth City, NC 14,000 6e 0.0% 0.0% 0.0% 0.0%

St. Marys, PA 14,000 6e 0.0% 0.0% 0.0% 0.0%

Brookings, SD 14,000 6e 0.0% 0.0% 0.0% 0.0%

Clovis, NM 14,000 6e 0.0% 0.0% 0.0% 0.0%

Platteville, WI 14,000 6e 0.0% 0.0% 0.0% 0.0%

Enterprise, AL 13,000 6e 0.0% 0.0% 0.0% 0.0%

Hastings, NE 13,000 6e 0.0% 0.0% 0.0% 0.0%

Angola, IN 13,000 6e 0.0% 0.0% 0.0% 0.0%

Point Pleasant, WV-OH 13,000 6e 0.0% 0.0% 0.0% 0.0%

Vincennes, IN 13,000 6e 0.0% 0.0% 0.0% 0.0%

Ponca City, OK 13,000 6e 0.0% 0.0% 0.0% 0.0%
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Austin, MN 13,000 6e 0.0% 0.0% 0.0% 0.0%

Newport, OR 13,000 6e 0.0% 0.0% 0.0% 0.0%

Defiance, OH 13,000 6e 0.0% 0.0% 0.0% 0.0%

Athens, TX 13,000 6e 0.0% 0.0% 0.0% 0.0%

Grand Rapids, MN 13,000 6e 0.0% 0.0% 0.0% 0.0%

Crawfordsville, IN 13,000 6e 0.0% 0.0% 0.0% 0.0%

Red Bluff, CA 13,000 6e 0.0% 0.0% 0.0% 0.0%

Sikeston, MO 13,000 6e 0.0% 0.0% 0.0% 0.0%

Cullowhee, NC 13,000 6e 0.0% 0.0% 0.0% 0.0%

Washington, NC 13,000 6e 0.0% 0.0% 0.0% 0.0%

Henderson, NC 13,000 6e 0.0% 0.0% 0.0% 0.0%

Corsicana, TX 13,000 6e 0.0% 0.0% 0.0% 0.0%

Warren, PA 13,000 6e 0.0% 0.0% 0.0% 0.0%

Montrose, CO 13,000 6e 0.0% 0.0% 0.0% 0.0%

Palatka, FL 13,000 6e 0.0% 0.0% 0.0% 0.0%

Scottsboro, AL 13,000 6e 0.0% 0.0% 0.0% 0.0%

Athens, OH 13,000 6e 0.0% 0.0% 0.0% 0.0%

Alexander City, AL 13,000 6e 0.0% 0.0% 0.0% 0.0%

Palestine, TX 13,000 6e 0.0% 0.0% 0.0% 0.0%

Duncan, OK 13,000 6e 0.0% 0.0% 0.0% 0.0%

Cambridge, OH 13,000 6e 0.0% 0.0% 0.0% 0.0%

Dyersburg, TN 13,000 6e 0.0% 0.0% 0.0% 0.0%

Jacksonville, IL 13,000 6e 0.0% 0.0% 0.0% 0.0%

El Campo, TX 13,000 6e 0.0% 0.0% 0.0% 0.0%

Bradford, PA 13,000 6e 0.0% 0.0% 0.0% 0.0%

Natchez, MS-LA 13,000 6e 0.0% 0.0% 0.0% 0.0%

Rolla, MO 12,000 6e 0.0% 0.0% 0.0% 0.0%

Cedar City, UT 12,000 6e 0.0% 0.0% 0.0% 0.0%

Rochelle, IL 12,000 6e 0.0% 0.0% 0.0% 0.0%

Iron Mountain, MI-WI 12,000 6e 0.0% 0.0% 0.0% 0.0%

Lebanon, MO 12,000 6e 0.0% 0.0% 0.0% 0.0%

Big Stone Gap, VA 12,000 6e 0.0% 0.0% 0.0% 0.0%

McPherson, KS 12,000 6e 0.0% 0.0% 0.0% 0.0%

Brownwood, TX 12,000 6e 0.0% 0.0% 0.0% 0.0%
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New Ulm, MN 12,000 6e 0.0% 0.0% 0.0% 0.0%

Granbury, TX 12,000 6e 0.0% 0.0% 0.0% 0.0%

Corinth, MS 12,000 6e 0.0% 0.0% 0.0% 0.0%

West Plains, MO 12,000 6e 0.0% 0.0% 0.0% 0.0%

Emporia, KS 12,000 6e 0.0% 0.0% 0.0% 0.0%

Hays, KS 12,000 6e 0.0% 0.0% 0.0% 0.0%

Huntington, IN 12,000 6e 0.0% 0.0% 0.0% 0.0%

Ada, OK 12,000 6e 0.0% 0.0% 0.0% 0.0%

Newberry, SC 12,000 6e 0.0% 0.0% 0.0% 0.0%

Greensburg, IN 12,000 6e 0.0% 0.0% 0.0% 0.0%

Escanaba, MI 12,000 6e 0.0% 0.0% 0.0% 0.0%

Brenham, TX 12,000 6e 0.0% 0.0% 0.0% 0.0%

Stephenville, TX 12,000 6e 0.0% 0.0% 0.0% 0.0%

North Platte, NE 12,000 6e 0.0% 0.0% 0.0% 0.0%

Juneau, AK 12,000 6e 0.0% 0.0% 0.0% 0.0%

McComb, MS 12,000 6e 0.0% 0.0% 0.0% 0.0%

Greenwood, MS 12,000 6e 0.0% 0.0% 0.0% 0.0%

Cornelia, GA 12,000 6e 0.0% 0.0% 0.0% 0.0%

Decatur, IN 12,000 6e 0.0% 0.0% 0.0% 0.0%

Marshall, MN 12,000 6e 0.0% 0.0% 0.0% 0.0%

Del Rio, TX 12,000 6e 0.0% 0.0% 0.0% 0.0%

Clearlake, CA 11,000 6e 0.0% 0.0% 0.0% 0.0%

Huntsville, TX 11,000 6e 0.0% 0.0% 0.0% 0.0%

Vidalia, GA 11,000 6e 0.0% 0.0% 0.0% 0.0%

Hood River, OR 11,000 6e 0.0% 0.0% 0.0% 0.0%

Logansport, IN 11,000 6e 0.0% 0.0% 0.0% 0.0%

Mitchell, SD 11,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Sterling, KY 11,000 6e 0.0% 0.0% 0.0% 0.0%

Pontiac, IL 11,000 6e 0.0% 0.0% 0.0% 0.0%

Moultrie, GA 11,000 6e 0.0% 0.0% 0.0% 0.0%

Jacksonville, TX 11,000 6e 0.0% 0.0% 0.0% 0.0%

Harrison, AR 11,000 6e 0.0% 0.0% 0.0% 0.0%

Milledgeville, GA 11,000 6e 0.0% 0.0% 0.0% 0.0%

Murray, KY 11,000 6e 0.0% 0.0% 0.0% 0.0%
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Eagle Pass, TX 11,000 6e 0.0% 0.0% 0.0% 0.0%

Winfield, KS 11,000 6e 0.0% 0.0% 0.0% 0.0%

Sonora, CA 11,000 6e 0.0% 0.0% 0.0% 0.0%

Gainesville, TX 11,000 6e 0.0% 0.0% 0.0% 0.0%

Wabash, IN 11,000 6e 0.0% 0.0% 0.0% 0.0%

Coffeyville, KS 11,000 6e 0.0% 0.0% 0.0% 0.0%

Brookhaven, MS 11,000 6e 0.0% 0.0% 0.0% 0.0%

Hillsdale, MI 11,000 6e 0.0% 0.0% 0.0% 0.0%

Bedford, IN 11,000 6e 0.0% 0.0% 0.0% 0.0%

Bucyrus-Galion, OH 11,000 6e 0.0% 0.0% 0.0% 0.0%

Blackfoot, ID 11,000 6e 0.0% 0.0% 0.0% 0.0%

Troy, AL 11,000 6e 0.0% 0.0% 0.0% 0.0%

Sulphur Springs, TX 11,000 6e 0.0% 0.0% 0.0% 0.0%

Pullman, WA 11,000 6e 0.0% 0.0% 0.0% 0.0%

Yankton, SD 11,000 6e 0.0% 0.0% 0.0% 0.0%

Ellensburg, WA 11,000 6e 0.0% 0.0% 0.0% 0.0%

New Castle, IN 11,000 6e 0.0% 0.0% 0.0% 0.0%

Oak Harbor, WA 10,000 6e 0.0% 0.0% 0.0% 0.0%

Campbellsville, KY 10,000 6e 0.0% 0.0% 0.0% 0.0%

Alma, MI 10,000 6e 0.0% 0.0% 0.0% 0.0%

Dixon, IL 10,000 6e 0.0% 0.0% 0.0% 0.0%

Frankfort, IN 10,000 6e 0.0% 0.0% 0.0% 0.0%

Madison, IN 10,000 6e 0.0% 0.0% 0.0% 0.0%

Sandpoint, ID 10,000 6e 0.0% 0.0% 0.0% 0.0%

Coldwater, MI 10,000 6e 0.0% 0.0% 0.0% 0.0%

Carroll, IA 10,000 6e 0.0% 0.0% 0.0% 0.0%

Fort Morgan, CO 10,000 6e 0.0% 0.0% 0.0% 0.0%

Hailey, ID 10,000 6e 0.0% 0.0% 0.0% 0.0%

Durant, OK 10,000 6e 0.0% 0.0% 0.0% 0.0%

Selma, AL 10,000 6e 0.0% 0.0% 0.0% 0.0%

Alamogordo, NM 10,000 6e 0.0% 0.0% 0.0% 0.0%

Sheridan, WY 10,000 6e 0.0% 0.0% 0.0% 0.0%

Riverton, WY 10,000 6e 0.0% 0.0% 0.0% 0.0%

Rockingham, NC 10,000 6e 0.0% 0.0% 0.0% 0.0%

Continued on next page

576



Table I.1 – Continued from previous page

CBSA Name Total Jobs ID CBD HD
Jobs

MD
Jobs

HD/
MD
Resid

Shawano, WI 10,000 6e 0.0% 0.0% 0.0% 0.0%

Washington, IN 10,000 6e 0.0% 0.0% 0.0% 0.0%

Okeechobee, FL 10,000 6e 0.0% 0.0% 0.0% 0.0%

Lock Haven, PA 10,000 6e 0.0% 0.0% 0.0% 0.0%

McMinnville, TN 10,000 6e 0.0% 0.0% 0.0% 0.0%

Albert Lea, MN 10,000 6e 0.0% 0.0% 0.0% 0.0%

Plainview, TX 10,000 6e 0.0% 0.0% 0.0% 0.0%

Laurinburg, NC 10,000 6e 0.0% 0.0% 0.0% 0.0%

Laramie, WY 10,000 6e 0.0% 0.0% 0.0% 0.0%

Lexington, NE 10,000 6e 0.0% 0.0% 0.0% 0.0%

Weatherford, OK 10,000 6e 0.0% 0.0% 0.0% 0.0%

Huntingdon, PA 10,000 6e 0.0% 0.0% 0.0% 0.0%

Great Bend, KS 10,000 6e 0.0% 0.0% 0.0% 0.0%

Natchitoches, LA 10,000 6e 0.0% 0.0% 0.0% 0.0%

Clewiston, FL 10,000 6e 0.0% 0.0% 0.0% 0.0%

Spearfish, SD 10,000 6e 0.0% 0.0% 0.0% 0.0%

Washington Court House, OH 10,000 6e 0.0% 0.0% 0.0% 0.0%

Hinesville, GA 10,000 6e 0.0% 0.0% 0.0% 0.0%

Cleveland, MS 9,000 6e 0.0% 0.0% 0.0% 0.0%

Nogales, AZ 9,000 6e 0.0% 0.0% 0.0% 0.0%

Dumas, TX 9,000 6e 0.0% 0.0% 0.0% 0.0%

Van Wert, OH 9,000 6e 0.0% 0.0% 0.0% 0.0%

Worthington, MN 9,000 6e 0.0% 0.0% 0.0% 0.0%

Malone, NY 9,000 6e 0.0% 0.0% 0.0% 0.0%

Grenada, MS 9,000 6e 0.0% 0.0% 0.0% 0.0%

Vernal, UT 9,000 6e 0.0% 0.0% 0.0% 0.0%

Minden, LA 9,000 6e 0.0% 0.0% 0.0% 0.0%

Alpena, MI 9,000 6e 0.0% 0.0% 0.0% 0.0%

Cedartown, GA 9,000 6e 0.0% 0.0% 0.0% 0.0%

Warrensburg, MO 9,000 6e 0.0% 0.0% 0.0% 0.0%

Mayfield, KY 9,000 6e 0.0% 0.0% 0.0% 0.0%

Elkins, WV 9,000 6e 0.0% 0.0% 0.0% 0.0%

Big Spring, TX 9,000 6e 0.0% 0.0% 0.0% 0.0%

McAlester, OK 9,000 6e 0.0% 0.0% 0.0% 0.0%
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Jamestown, ND 9,000 6e 0.0% 0.0% 0.0% 0.0%

Fredericksburg, TX 9,000 6e 0.0% 0.0% 0.0% 0.0%

Americus, GA 9,000 6e 0.0% 0.0% 0.0% 0.0%

Seneca Falls, NY 9,000 6e 0.0% 0.0% 0.0% 0.0%

Atmore, AL 9,000 6e 0.0% 0.0% 0.0% 0.0%

Fernley, NV 9,000 6e 0.0% 0.0% 0.0% 0.0%

Urbana, OH 9,000 6e 0.0% 0.0% 0.0% 0.0%

Moscow, ID 9,000 6e 0.0% 0.0% 0.0% 0.0%

Elk City, OK 9,000 6e 0.0% 0.0% 0.0% 0.0%

The Dalles, OR 9,000 6e 0.0% 0.0% 0.0% 0.0%

Houghton, MI 9,000 6e 0.0% 0.0% 0.0% 0.0%

Cambridge, MD 9,000 6e 0.0% 0.0% 0.0% 0.0%

Taylorville, IL 9,000 6e 0.0% 0.0% 0.0% 0.0%

Union City, TN 9,000 6e 0.0% 0.0% 0.0% 0.0%

Huron, SD 9,000 6e 0.0% 0.0% 0.0% 0.0%

Coshocton, OH 9,000 6e 0.0% 0.0% 0.0% 0.0%

La Grande, OR 9,000 6e 0.0% 0.0% 0.0% 0.0%

Storm Lake, IA 9,000 6e 0.0% 0.0% 0.0% 0.0%

Berlin, NH 9,000 6e 0.0% 0.0% 0.0% 0.0%

Payson, AZ 9,000 6e 0.0% 0.0% 0.0% 0.0%

Paris, TN 8,000 6e 0.0% 0.0% 0.0% 0.0%

Ludington, MI 8,000 6e 0.0% 0.0% 0.0% 0.0%

Jackson, OH 8,000 6e 0.0% 0.0% 0.0% 0.0%

Lawrenceburg, TN 8,000 6e 0.0% 0.0% 0.0% 0.0%

Big Rapids, MI 8,000 6e 0.0% 0.0% 0.0% 0.0%

Martin, TN 8,000 6e 0.0% 0.0% 0.0% 0.0%

Canon City, CO 8,000 6e 0.0% 0.0% 0.0% 0.0%

Taos, NM 8,000 6e 0.0% 0.0% 0.0% 0.0%

Rio Grande City-Roma, TX 8,000 6e 0.0% 0.0% 0.0% 0.0%

Pahrump, NV 8,000 6e 0.0% 0.0% 0.0% 0.0%

Spirit Lake, IA 8,000 6e 0.0% 0.0% 0.0% 0.0%

Camden, AR 8,000 6e 0.0% 0.0% 0.0% 0.0%

Liberal, KS 8,000 6e 0.0% 0.0% 0.0% 0.0%

Bogalusa, LA 8,000 6e 0.0% 0.0% 0.0% 0.0%
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Kirksville, MO 8,000 6e 0.0% 0.0% 0.0% 0.0%

Port Lavaca, TX 8,000 6e 0.0% 0.0% 0.0% 0.0%

Pierre, SD 8,000 6e 0.0% 0.0% 0.0% 0.0%

Bay City, TX 8,000 6e 0.0% 0.0% 0.0% 0.0%

Shelton, WA 8,000 6e 0.0% 0.0% 0.0% 0.0%

Hope, AR 8,000 6e 0.0% 0.0% 0.0% 0.0%

Guymon, OK 8,000 6e 0.0% 0.0% 0.0% 0.0%

Woodward, OK 8,000 6e 0.0% 0.0% 0.0% 0.0%

Dayton, TN 8,000 6e 0.0% 0.0% 0.0% 0.0%

Mount Gay-Shamrock, WV 8,000 6e 0.0% 0.0% 0.0% 0.0%

Kennett, MO 8,000 6e 0.0% 0.0% 0.0% 0.0%

St. Marys, GA 8,000 6e 0.0% 0.0% 0.0% 0.0%

Ottawa, KS 8,000 6e 0.0% 0.0% 0.0% 0.0%

Lewisburg, TN 8,000 6e 0.0% 0.0% 0.0% 0.0%

Fairmont, MN 8,000 6e 0.0% 0.0% 0.0% 0.0%

Parsons, KS 8,000 6e 0.0% 0.0% 0.0% 0.0%

Levelland, TX 7,000 6e 0.0% 0.0% 0.0% 0.0%

Wahpeton, ND-MN 7,000 6e 0.0% 0.0% 0.0% 0.0%

Lincoln, IL 7,000 6e 0.0% 0.0% 0.0% 0.0%

Tahlequah, OK 7,000 6e 0.0% 0.0% 0.0% 0.0%

Moberly, MO 7,000 6e 0.0% 0.0% 0.0% 0.0%

Brevard, NC 7,000 6e 0.0% 0.0% 0.0% 0.0%

Oskaloosa, IA 7,000 6e 0.0% 0.0% 0.0% 0.0%

Marshall, MO 7,000 6e 0.0% 0.0% 0.0% 0.0%

Macomb, IL 7,000 6e 0.0% 0.0% 0.0% 0.0%

Borger, TX 7,000 6e 0.0% 0.0% 0.0% 0.0%

Picayune, MS 7,000 6e 0.0% 0.0% 0.0% 0.0%

Beatrice, NE 7,000 6e 0.0% 0.0% 0.0% 0.0%

Malvern, AR 7,000 6e 0.0% 0.0% 0.0% 0.0%

Mexico, MO 7,000 6e 0.0% 0.0% 0.0% 0.0%

Scottsburg, IN 7,000 6e 0.0% 0.0% 0.0% 0.0%

Spencer, IA 7,000 6e 0.0% 0.0% 0.0% 0.0%

Maysville, KY 7,000 6e 0.0% 0.0% 0.0% 0.0%

Peru, IN 7,000 6e 0.0% 0.0% 0.0% 0.0%
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Toccoa, GA 7,000 6e 0.0% 0.0% 0.0% 0.0%

Jennings, LA 7,000 6e 0.0% 0.0% 0.0% 0.0%

Arcadia, FL 7,000 6e 0.0% 0.0% 0.0% 0.0%

Arkadelphia, AR 7,000 6e 0.0% 0.0% 0.0% 0.0%

Ozark, AL 7,000 6e 0.0% 0.0% 0.0% 0.0%

Eufaula, AL-GA 7,000 6e 0.0% 0.0% 0.0% 0.0%

Central City, KY 6,000 6e 0.0% 0.0% 0.0% 0.0%

Fairfield, IA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Cordele, GA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Miami, OK 6,000 6e 0.0% 0.0% 0.0% 0.0%

DeRidder, LA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Middlesborough, KY 6,000 6e 0.0% 0.0% 0.0% 0.0%

Kingsville, TX 6,000 6e 0.0% 0.0% 0.0% 0.0%

Uvalde, TX 6,000 6e 0.0% 0.0% 0.0% 0.0%

Clarksdale, MS 6,000 6e 0.0% 0.0% 0.0% 0.0%

Magnolia, AR 6,000 6e 0.0% 0.0% 0.0% 0.0%

Safford, AZ 6,000 6e 0.0% 0.0% 0.0% 0.0%

Sault Ste. Marie, MI 6,000 6e 0.0% 0.0% 0.0% 0.0%

Silver City, NM 6,000 6e 0.0% 0.0% 0.0% 0.0%

Evanston, WY 6,000 6e 0.0% 0.0% 0.0% 0.0%

North Vernon, IN 6,000 6e 0.0% 0.0% 0.0% 0.0%

Union, SC 6,000 6e 0.0% 0.0% 0.0% 0.0%

Pampa, TX 6,000 6e 0.0% 0.0% 0.0% 0.0%

Vineyard Haven, MA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Forrest City, AR 6,000 6e 0.0% 0.0% 0.0% 0.0%

Winnemucca, NV 6,000 6e 0.0% 0.0% 0.0% 0.0%

Price, UT 6,000 6e 0.0% 0.0% 0.0% 0.0%

Fort Polk South, LA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Jesup, GA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Othello, WA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Fallon, NV 6,000 6e 0.0% 0.0% 0.0% 0.0%

Newport, TN 6,000 6e 0.0% 0.0% 0.0% 0.0%

Maryville, MO 6,000 6e 0.0% 0.0% 0.0% 0.0%

Mineral Wells, TX 6,000 6e 0.0% 0.0% 0.0% 0.0%
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Fort Leonard Wood, MO 6,000 6e 0.0% 0.0% 0.0% 0.0%

Bainbridge, GA 6,000 6e 0.0% 0.0% 0.0% 0.0%

Altus, OK 6,000 6e 0.0% 0.0% 0.0% 0.0%

Bonham, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Indianola, MS 5,000 6e 0.0% 0.0% 0.0% 0.0%

Andrews, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Las Vegas, NM 5,000 6e 0.0% 0.0% 0.0% 0.0%

Sterling, CO 5,000 6e 0.0% 0.0% 0.0% 0.0%

Connersville, IN 5,000 6e 0.0% 0.0% 0.0% 0.0%

Hereford, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Wauchula, FL 5,000 6e 0.0% 0.0% 0.0% 0.0%

Espanola, NM 5,000 6e 0.0% 0.0% 0.0% 0.0%

Beeville, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Pearsall, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Summerville, GA 5,000 6e 0.0% 0.0% 0.0% 0.0%

Deming, NM 5,000 6e 0.0% 0.0% 0.0% 0.0%

Brookings, OR 5,000 6e 0.0% 0.0% 0.0% 0.0%

Atchison, KS 5,000 6e 0.0% 0.0% 0.0% 0.0%

Prineville, OR 5,000 6e 0.0% 0.0% 0.0% 0.0%

Rockport, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Thomaston, GA 5,000 6e 0.0% 0.0% 0.0% 0.0%

West Point, MS 5,000 6e 0.0% 0.0% 0.0% 0.0%

Grants, NM 5,000 6e 0.0% 0.0% 0.0% 0.0%

Fitzgerald, GA 5,000 6e 0.0% 0.0% 0.0% 0.0%

Snyder, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Sweetwater, TX 5,000 6e 0.0% 0.0% 0.0% 0.0%

Crescent City, CA 5,000 6e 0.0% 0.0% 0.0% 0.0%

Ruidoso, NM 4,000 6e 0.0% 0.0% 0.0% 0.0%

Mountain Home, ID 4,000 6e 0.0% 0.0% 0.0% 0.0%

Helena-West Helena, AR 4,000 6e 0.0% 0.0% 0.0% 0.0%

Portales, NM 4,000 6e 0.0% 0.0% 0.0% 0.0%

Bennettsville, SC 4,000 6e 0.0% 0.0% 0.0% 0.0%

Brownsville, TN 4,000 6e 0.0% 0.0% 0.0% 0.0%

Susanville, CA 4,000 6e 0.0% 0.0% 0.0% 0.0%
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Craig, CO 3,000 6e 0.0% 0.0% 0.0% 0.0%

Pecos, TX 3,000 6e 0.0% 0.0% 0.0% 0.0%

Vernon, TX 3,000 6e 0.0% 0.0% 0.0% 0.0%

Winchester, VA-WV 3,000 6e 0.0% 0.0% 0.0% 0.0%

Vermillion, SD 3,000 6e 0.0% 0.0% 0.0% 0.0%

Lamesa, TX 3,000 6e 0.0% 0.0% 0.0% 0.0%

Raymondville, TX 2,000 6e 0.0% 0.0% 0.0% 0.0%

Zapata, TX 1,000 6e 0.0% 0.0% 0.0% 0.0%
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New York-Newark-Jersey City, NY-NJ-PA 19,274,000 1 35.9% 2.7% 10.9% 0.7%

Los Angeles-Long Beach-Anaheim, CA 13,242,000 2a 5.6% 7.6% 16.3% 1.8%

San Francisco-Oakland-Berkeley, CA 4,654,000 2a 9.8% 3.6% 14.8% 2.0%

Urban Honolulu, HI 893,000 2b 11.5% 5.0% 4.7% 0.9%

Chicago-Naperville-Elgin, IL-IN-WI 9,511,000 2c 6.0% 1.3% 13.8% 0.8%

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 6,030,000 2c 5.1% 0.2% 15.2% 0.4%

Boston-Cambridge-Newton, MA-NH 4,795,000 2c 7.8% 1.0% 13.9% 1.4%

Washington-Arlington-Alexandria, DC-VA-MD-WV 6,081,000 2d 4.6% 2.8% 3.1% 2.2%

San Diego-Chula Vista-Carlsbad, CA 3,211,000 3a 1.4% 5.1% 4.7% 1.0%

San Jose-Sunnyvale-Santa Clara, CA 1,980,000 3a 0.8% 6.3% 4.9% 1.4%

Ann Arbor, MI 364,000 3a 0.8% 4.5% 0.4% 0.8%

Iowa City, IA 167,000 3a 1.2% 3.5% 1.2% 0.0%

Seattle-Tacoma-Bellevue, WA 3,784,000 3b 2.7% 2.7% 1.0% 1.5%

Madison, WI 641,000 3b 3.5% 0.1% 0.2% 2.2%

Santa Maria-Santa Barbara, CA 434,000 3b 3.1% 3.0% 7.5% 1.1%

Miami-Fort Lauderdale-Pompano Beach, FL 6,057,000 3c 2.5% 5.0% 2.5% 1.0%

Champaign-Urbana, IL 223,000 3c 3.4% 4.8% 0.0% 0.2%

State College, PA 158,000 3c 3.1% 5.7% 0.0% 0.0%

Baltimore-Columbia-Towson, MD 2,758,000 3d 1.6% 0.1% 6.7% 0.7%

Milwaukee-Waukesha, WI 1,572,000 3d 0.8% 1.5% 9.4% 1.0%

Hartford-East Hartford-Middletown, CT 1,204,000 3d 0.9% 0.2% 4.0% 0.5%

Worcester, MA-CT 931,000 3d 0.7% 0.2% 5.1% 0.0%

Bridgeport-Stamford-Norwalk, CT 931,000 3d 1.4% 1.5% 8.4% 1.2%

Albany-Schenectady-Troy, NY 864,000 3d 1.1% 0.2% 4.4% 0.5%

New Haven-Milford, CT 855,000 3d 1.6% 0.4% 3.8% 0.4%

Allentown-Bethlehem-Easton, PA-NJ 821,000 3d 2.0% 0.0% 5.5% 0.0%

Springfield, MA 692,000 3d 0.7% 0.0% 5.3% 0.7%

Lancaster, PA 533,000 3d 0.8% 0.0% 6.3% 1.0%

Reading, PA 414,000 3d 1.7% 0.0% 10.8% 0.6%

Manchester-Nashua, NH 409,000 3d 0.9% 0.0% 7.5% 0.6%

Trenton-Princeton, NJ 362,000 3d 1.0% 0.0% 12.9% 0.6%

Lebanon, PA 137,000 3d 0.8% 0.0% 5.4% 0.0%

Lewiston-Auburn, ME 106,000 3d 1.5% 0.0% 4.5% 0.6%
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Minneapolis-St. Paul-Bloomington, MN-WI 3,524,000 3e 1.1% 1.8% 0.8% 1.5%

Denver-Aurora-Lakewood, CO 2,840,000 3e 1.1% 2.2% 0.1% 1.6%

Portland-Vancouver-Hillsboro, OR-WA 2,409,000 3e 1.1% 0.7% 0.8% 1.3%

Austin-Round Rock-Georgetown, TX 2,043,000 3e 0.7% 0.7% 0.2% 1.4%

Eugene-Springfield, OR 366,000 3e 1.5% 0.9% 0.0% 1.5%

Sioux Falls, SD 250,000 3e 1.3% 0.7% 0.0% 1.1%

Fargo, ND-MN 234,000 3e 0.7% 0.0% 0.0% 2.3%

Burlington-South Burlington, VT 213,000 3e 0.9% 0.0% 3.2% 2.3%

La Crosse-Onalaska, WI-MN 135,000 3e 0.7% 0.0% 1.6% 1.5%

Dallas-Fort Worth-Arlington, TX 7,139,000 3f 0.7% 0.9% 0.3% 0.8%

Atlanta-Sandy Springs-Alpharetta, GA 5,751,000 3f 0.7% 0.1% 0.0% 0.8%

Orlando-Kissimmee-Sanford, FL 2,435,000 3f 0.7% 0.0% 0.0% 0.5%

Pittsburgh, PA 2,322,000 3f 1.1% 0.2% 1.6% 0.6%

Indianapolis-Carmel-Anderson, IN 1,991,000 3f 0.7% 0.0% 0.1% 0.4%

Syracuse, NY 644,000 3f 1.1% 0.2% 1.7% 0.7%

Portland-South Portland, ME 521,000 3f 1.2% 0.0% 0.5% 0.8%

Reno, NV 452,000 3f 0.7% 0.4% 0.3% 0.5%

Rockford, IL 338,000 3f 0.7% 0.0% 0.0% 0.2%

South Bend-Mishawaka, IN-MI 318,000 3f 1.0% 0.0% 0.0% 0.2%

Utica-Rome, NY 287,000 3f 0.7% 0.0% 3.5% 0.3%

Atlantic City-Hammonton, NJ 263,000 3f 2.2% 0.8% 2.0% 0.4%

Duluth, MN-WI 241,000 3f 1.2% 0.0% 1.3% 0.2%

Binghamton, NY 239,000 3f 0.8% 0.0% 1.3% 0.2%

Rochester, MN 214,000 3f 0.8% 0.0% 0.0% 0.0%

Pittsfield, MA 126,000 3f 1.1% 0.0% 0.0% 0.6%

Muncie, IN 114,000 3f 0.9% 0.0% 0.0% 0.0%

Owensboro, KY 113,000 3f 0.7% 0.0% 0.0% 0.0%

Longview, WA 102,000 3f 0.7% 0.0% 1.5% 0.0%

Grand Forks, ND-MN 97,000 3f 0.9% 0.0% 0.0% 0.0%

Cape Girardeau, MO-IL 95,000 3f 0.8% 0.0% 0.0% 0.0%

Victoria, TX 95,000 3f 0.9% 0.0% 0.0% 0.0%

Great Falls, MT 77,000 3f 0.7% 0.0% 0.0% 0.0%

Plattsburgh, NY 74,000 3f 1.0% 0.0% 0.0% 0.0%

Wisconsin Rapids-Marshfield, WI 72,000 3f 0.9% 0.0% 0.0% 0.0%
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Laconia, NH 60,000 3f 1.4% 0.0% 0.0% 0.0%

Salina, KS 59,000 3f 1.1% 0.0% 0.0% 0.0%

Sayre, PA 58,000 3f 1.0% 0.0% 0.0% 0.0%

Galesburg, IL 50,000 3f 1.8% 0.0% 0.0% 0.0%

Mason City, IA 49,000 3f 1.0% 0.0% 0.0% 0.0%

Thomasville, GA 44,000 3f 1.0% 0.0% 0.0% 0.0%

Centralia, IL 37,000 3f 0.7% 0.0% 0.0% 0.0%

Easton, MD 35,000 3f 1.8% 0.0% 0.0% 0.0%

Corvallis, OR 85,000 4a 0.0% 6.5% 0.0% 0.0%

Mount Pleasant, MI 69,000 4a 0.0% 3.7% 0.0% 0.0%

Butte-Silver Bow, MT 34,000 4a 0.0% 3.6% 0.0% 0.0%

Providence-Warwick, RI-MA 1,607,000 4b 0.6% 0.0% 13.3% 0.4%

New Orleans-Metairie, LA 1,248,000 4b 0.6% 0.4% 4.6% 0.9%

Buffalo-Cheektowaga, NY 1,123,000 4b 0.3% 0.0% 6.7% 0.6%

Oxnard-Thousand Oaks-Ventura, CA 838,000 4b 0.1% 0.3% 4.4% 0.0%

Poughkeepsie-Newburgh-Middletown, NY 660,000 4b 0.2% 0.0% 3.3% 0.4%

Provo-Orem, UT 598,000 4b 0.2% 0.0% 3.4% 0.5%

Harrisburg-Carlisle, PA 553,000 4b 0.1% 0.0% 3.1% 0.1%

Scranton–Wilkes-Barre, PA 549,000 4b 0.4% 0.0% 5.0% 0.7%

York-Hanover, PA 440,000 4b 0.1% 0.0% 5.1% 0.2%

Salinas, CA 423,000 4b 0.0% 0.6% 6.9% 0.2%

Erie, PA 272,000 4b 0.5% 0.0% 3.8% 0.3%

Santa Cruz-Watsonville, CA 272,000 4b 0.0% 0.8% 3.0% 0.6%

El Centro, CA 176,000 4b 0.0% 0.0% 3.9% 0.0%

Bowling Green, KY 164,000 4b 0.2% 0.0% 2.9% 0.3%

Blacksburg-Christiansburg, VA 163,000 4b 0.0% 0.0% 3.2% 0.0%

Ithaca, NY 101,000 4b 0.3% 0.0% 5.3% 1.5%

Sunbury, PA 85,000 4b 0.0% 0.0% 4.4% 0.0%

Houston-The Woodlands-Sugar Land, TX 6,730,000 4c 0.6% 1.9% 0.1% 1.5%

Las Vegas-Henderson-Paradise, NV 2,123,000 4c 0.3% 1.3% 2.2% 0.2%

Lansing-East Lansing, MI 540,000 4c 0.1% 1.6% 0.0% 0.2%

Fort Collins, CO 336,000 4c 0.0% 1.5% 0.0% 0.1%

Boulder, CO 320,000 4c 0.0% 2.5% 2.4% 1.1%

Lafayette-West Lafayette, IN 221,000 4c 0.3% 2.8% 0.0% 0.0%
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Greenville, NC 175,000 4c 0.0% 1.3% 0.0% 0.0%

Bloomington, IL 172,000 4c 0.2% 1.2% 0.0% 0.3%

Wausau-Weston, WI 159,000 4c 0.1% 1.5% 0.0% 0.0%

Morgantown, WV 136,000 4c 0.1% 1.4% 0.0% 0.0%

Missoula, MT 114,000 4c 0.6% 2.2% 0.0% 1.1%

Indiana, PA 80,000 4c 0.0% 2.8% 3.8% 0.0%

Salt Lake City, UT 1,178,000 4d 0.5% 0.3% 0.0% 1.4%

Omaha-Council Bluffs, NE-IA 913,000 4d 0.2% 0.2% 0.0% 1.5%

Durham-Chapel Hill, NC 608,000 4d 0.4% 0.0% 0.0% 1.2%

Spokane-Spokane Valley, WA 535,000 4d 0.5% 0.0% 0.0% 1.0%

Anchorage, AK 381,000 4d 0.4% 0.0% 0.8% 1.2%

Chico, CA 225,000 4d 0.2% 0.0% 0.3% 0.7%

Charlottesville, VA 209,000 4d 0.0% 0.0% 0.0% 0.7%

St. Cloud, MN 193,000 4d 0.1% 0.0% 0.0% 0.7%

Bloomington, IN 162,000 4d 0.0% 0.0% 0.0% 1.0%

Glens Falls, NY 115,000 4d 0.0% 0.0% 0.0% 0.8%

Bozeman, MT 103,000 4d 0.0% 0.0% 0.0% 0.8%

Dubuque, IA 95,000 4d 0.0% 0.0% 0.0% 0.7%

Stillwater, OK 79,000 4d 0.0% 0.0% 0.0% 2.3%

Glenwood Springs, CO 75,000 4d 0.0% 0.0% 0.0% 1.1%

Findlay, OH 74,000 4d 0.0% 0.0% 0.0% 0.7%

Key West, FL 72,000 4d 0.0% 0.0% 2.4% 2.4%

Rexburg, ID 51,000 4d 0.0% 0.0% 2.0% 1.2%

Winona, MN 48,000 4d 0.0% 0.0% 0.0% 0.8%

Paragould, AR 43,000 4d 0.0% 0.0% 0.0% 1.2%

Jackson, WY-ID 33,000 4d 0.0% 0.0% 0.0% 1.8%

Los Alamos, NM 18,000 4d 0.0% 0.0% 0.0% 1.2%

Ketchikan, AK 13,000 4d 0.0% 0.0% 0.0% 1.1%

Phoenix-Mesa-Chandler, AZ 4,648,000 4e 0.4% 0.9% 0.5% 0.7%

Riverside-San Bernardino-Ontario, CA 4,461,000 4e 0.1% 0.2% 0.8% 0.2%

Detroit-Warren-Dearborn, MI 4,305,000 4e 0.3% 0.2% 0.5% 0.5%

Tampa-St. Petersburg-Clearwater, FL 3,018,000 4e 0.4% 0.4% 0.0% 0.6%

St. Louis, MO-IL 2,789,000 4e 0.6% 0.1% 1.6% 0.4%

Charlotte-Concord-Gastonia, NC-SC 2,471,000 4e 0.3% 0.0% 0.0% 0.5%
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San Antonio-New Braunfels, TX 2,386,000 4e 0.4% 0.0% 0.1% 0.4%

Sacramento-Roseville-Folsom, CA 2,278,000 4e 0.3% 0.7% 0.5% 0.6%

Cincinnati, OH-KY-IN 2,170,000 4e 0.2% 0.0% 0.8% 0.5%

Kansas City, MO-KS 2,087,000 4e 0.4% 0.0% 0.2% 0.5%

Cleveland-Elyria, OH 2,052,000 4e 0.2% 0.5% 0.8% 0.4%

Columbus, OH 2,037,000 4e 0.6% 0.1% 1.9% 0.4%

Nashville-Davidson–Murfreesboro–Franklin, TN 1,813,000 4e 0.5% 0.0% 0.1% 0.8%

Virginia Beach-Norfolk-Newport News, VA-NC 1,697,000 4e 0.4% 0.3% 0.3% 0.4%

Jacksonville, FL 1,450,000 4e 0.3% 0.0% 0.0% 0.4%

Oklahoma City, OK 1,351,000 4e 0.3% 0.0% 0.3% 0.3%

Memphis, TN-MS-AR 1,324,000 4e 0.4% 0.0% 0.0% 0.2%

Raleigh-Cary, NC 1,295,000 4e 0.2% 0.2% 0.0% 0.4%

Richmond, VA 1,239,000 4e 0.3% 0.2% 1.2% 0.4%

Louisville-Jefferson County, KY-IN 1,238,000 4e 0.4% 0.0% 0.2% 0.4%

Rochester, NY 1,061,000 4e 0.6% 0.0% 2.4% 0.2%

Birmingham-Hoover, AL 1,057,000 4e 0.3% 0.3% 0.1% 0.5%

Grand Rapids-Kentwood, MI 1,049,000 4e 0.3% 0.0% 1.1% 0.4%

Tucson, AZ 1,009,000 4e 0.2% 0.4% 0.2% 0.2%

Fresno, CA 972,000 4e 0.2% 0.0% 1.4% 0.2%

Tulsa, OK 972,000 4e 0.3% 0.0% 0.0% 0.1%

Albuquerque, NM 891,000 4e 0.2% 0.0% 0.0% 0.3%

Knoxville, TN 838,000 4e 0.3% 0.4% 0.0% 0.4%

El Paso, TX 813,000 4e 0.1% 0.0% 0.4% 0.4%

Dayton-Kettering, OH 795,000 4e 0.3% 0.0% 0.0% 0.2%

Columbia, SC 790,000 4e 0.1% 0.0% 0.0% 0.4%

North Port-Sarasota-Bradenton, FL 782,000 4e 0.2% 0.0% 0.0% 0.4%

Greensboro-High Point, NC 748,000 4e 0.3% 0.0% 0.0% 0.1%

Charleston-North Charleston, SC 741,000 4e 0.4% 0.0% 0.0% 0.3%

Little Rock-North Little Rock-Conway, AR 720,000 4e 0.2% 0.0% 0.1% 0.3%

Akron, OH 701,000 4e 0.3% 0.0% 0.3% 0.1%

Boise City, ID 686,000 4e 0.2% 0.0% 0.0% 0.1%

Stockton, CA 676,000 4e 0.2% 0.2% 1.2% 0.2%

Lakeland-Winter Haven, FL 656,000 4e 0.2% 0.0% 0.0% 0.1%

Winston-Salem, NC 656,000 4e 0.2% 0.0% 0.0% 0.1%
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Des Moines-West Des Moines, IA 654,000 4e 0.4% 0.0% 0.0% 0.6%

Toledo, OH 640,000 4e 0.3% 0.0% 0.0% 0.1%

Augusta-Richmond County, GA-SC 577,000 4e 0.2% 0.0% 0.0% 0.2%

Chattanooga, TN-GA 544,000 4e 0.5% 0.0% 0.0% 0.1%

Modesto, CA 536,000 4e 0.4% 0.0% 0.7% 0.0%

Lexington-Fayette, KY 499,000 4e 0.1% 0.0% 0.4% 0.4%

Springfield, MO 450,000 4e 0.5% 0.0% 0.0% 0.7%

Asheville, NC 445,000 4e 0.2% 0.0% 0.0% 0.4%

Huntsville, AL 440,000 4e 0.1% 0.0% 0.0% 0.3%

Vallejo, CA 430,000 4e 0.3% 0.0% 0.4% 0.4%

Corpus Christi, TX 421,000 4e 0.4% 0.0% 0.3% 0.3%

Peoria, IL 402,000 4e 0.4% 0.0% 0.0% 0.1%

Fort Wayne, IN 400,000 4e 0.2% 0.0% 0.0% 0.5%

Canton-Massillon, OH 398,000 4e 0.2% 0.0% 0.0% 0.1%

Tallahassee, FL 373,000 4e 0.4% 0.0% 0.0% 0.3%

Huntington-Ashland, WV-KY-OH 357,000 4e 0.3% 0.0% 0.2% 0.3%

Lincoln, NE 325,000 4e 0.4% 0.9% 1.0% 0.4%

Gainesville, FL 315,000 4e 0.5% 0.0% 0.0% 0.0%

Green Bay, WI 315,000 4e 0.3% 0.0% 0.3% 0.2%

Roanoke, VA 310,000 4e 0.4% 0.0% 0.0% 0.1%

Evansville, IN-KY 308,000 4e 0.3% 0.0% 0.2% 0.1%

Wilmington, NC 278,000 4e 0.2% 0.0% 0.0% 0.1%

San Luis Obispo-Paso Robles, CA 275,000 4e 0.5% 0.0% 0.5% 0.2%

Olympia-Lacey-Tumwater, WA 273,000 4e 0.1% 0.0% 0.0% 0.4%

Cedar Rapids, IA 265,000 4e 0.5% 0.0% 0.4% 0.3%

Waco, TX 260,000 4e 0.5% 0.0% 0.3% 0.2%

Kalamazoo-Portage, MI 260,000 4e 0.3% 0.0% 0.6% 0.2%

Amarillo, TX 260,000 4e 0.5% 0.0% 0.0% 0.0%

Charleston, WV 258,000 4e 0.4% 0.0% 0.0% 0.2%

College Station-Bryan, TX 247,000 4e 0.4% 0.0% 0.0% 0.0%

Yakima, WA 246,000 4e 0.3% 0.6% 1.3% 0.0%

Topeka, KS 229,000 4e 0.3% 0.0% 0.0% 0.5%

Macon-Bibb County, GA 220,000 4e 0.5% 0.0% 0.0% 0.2%

Tyler, TX 219,000 4e 0.4% 0.0% 0.0% 0.0%

Continued on next page

588



Table I.2 – Continued from previous page

CBSA Name Total Jobs ID HD
Pop.

MD
Large
Apt.
Pop.

MD
Small
Apt.
Pop.

MD
Comm.
Pop.

Prescott Valley-Prescott, AZ 217,000 4e 0.2% 0.0% 0.0% 0.0%

Bellingham, WA 212,000 4e 0.2% 0.0% 0.0% 0.4%

Medford, OR 211,000 4e 0.4% 0.0% 0.7% 0.4%

Lebanon, NH-VT 211,000 4e 0.2% 0.0% 0.0% 0.0%

Springfield, IL 207,000 4e 0.4% 0.0% 0.0% 0.8%

Columbia, MO 199,000 4e 0.6% 0.0% 0.0% 0.4%

Gainesville, GA 193,000 4e 0.6% 0.0% 0.0% 0.0%

Saginaw, MI 191,000 4e 0.3% 0.0% 0.0% 0.1%

Terre Haute, IN 181,000 4e 0.2% 0.0% 0.0% 0.0%

Bend, OR 178,000 4e 0.4% 0.0% 0.0% 0.3%

Punta Gorda, FL 176,000 4e 0.3% 0.0% 0.0% 0.0%

Oshkosh-Neenah, WI 166,000 4e 0.3% 0.0% 1.9% 0.2%

Abilene, TX 164,000 4e 0.2% 0.0% 0.0% 0.0%

Eau Claire, WI 163,000 4e 0.4% 0.0% 0.0% 0.0%

Pueblo, CO 163,000 4e 0.2% 0.0% 0.0% 0.2%

Janesville-Beloit, WI 160,000 4e 0.3% 0.0% 0.0% 0.0%

Jackson, MI 157,000 4e 0.5% 0.0% 0.0% 0.3%

Niles, MI 153,000 4e 0.2% 0.0% 0.0% 0.0%

Kahului-Wailuku-Lahaina, HI 152,000 4e 0.3% 0.0% 0.0% 0.0%

Grand Junction, CO 148,000 4e 0.4% 0.0% 0.0% 0.0%

Alexandria, LA 148,000 4e 0.4% 0.0% 0.0% 0.4%

Concord, NH 147,000 4e 0.3% 0.0% 0.0% 0.0%

Bangor, ME 147,000 4e 0.5% 0.0% 0.0% 0.5%

Traverse City, MI 146,000 4e 0.4% 0.0% 0.0% 0.3%

Santa Fe, NM 145,000 4e 0.2% 0.0% 0.0% 0.3%

Jefferson City, MO 145,000 4e 0.5% 0.0% 0.0% 0.0%

Dalton, GA 140,000 4e 0.3% 0.0% 0.0% 0.0%

Flagstaff, AZ 136,000 4e 0.2% 0.0% 0.0% 0.3%

Johnstown, PA 131,000 4e 0.4% 0.0% 0.0% 0.0%

Rapid City, SD 131,000 4e 0.5% 0.0% 0.0% 0.4%

Jonesboro, AR 127,000 4e 0.4% 0.0% 0.0% 0.0%

St. Joseph, MO-KS 124,000 4e 0.2% 0.0% 0.0% 0.0%

Bismarck, ND 124,000 4e 0.6% 0.0% 0.0% 0.8%

Farmington, NM 124,000 4e 0.2% 0.0% 0.0% 0.0%
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San Angelo, TX 116,000 4e 0.2% 0.0% 0.0% 0.0%

Kankakee, IL 109,000 4e 0.3% 0.0% 0.0% 0.0%

Decatur, IL 104,000 4e 0.4% 0.0% 0.0% 0.0%

Mankato, MN 98,000 4e 0.3% 0.0% 0.0% 0.0%

Kalispell, MT 97,000 4e 0.5% 0.0% 0.0% 0.0%

Rome, GA 93,000 4e 0.4% 0.0% 0.0% 0.0%

Fairbanks, AK 84,000 4e 0.4% 0.0% 0.0% 0.0%

Bloomsburg-Berwick, PA 83,000 4e 0.6% 0.0% 0.0% 0.0%

Quincy, IL-MO 75,000 4e 0.6% 0.0% 0.0% 0.5%

Keene, NH 75,000 4e 0.2% 0.0% 0.0% 0.0%

Hutchinson, KS 61,000 4e 0.4% 0.0% 0.0% 0.0%

Oneonta, NY 58,000 4e 0.4% 0.0% 0.0% 0.0%

Rutland, VT 58,000 4e 0.6% 0.0% 0.0% 0.0%

Batesville, AR 52,000 4e 0.3% 0.0% 0.0% 0.0%

Mountain Home, AR 40,000 4e 0.3% 0.0% 0.0% 0.0%

Pittsburg, KS 38,000 4e 0.6% 0.0% 0.0% 0.0%

Fremont, NE 35,000 4e 0.4% 0.0% 0.0% 0.0%

Steamboat Springs, CO 24,000 4e 0.6% 0.0% 0.0% 0.0%

Greenville-Anderson, SC 875,000 4f 0.2% 0.0% 0.0% 0.2%

Bakersfield, CA 869,000 4f 0.2% 0.0% 1.4% 0.0%

McAllen-Edinburg-Mission, TX 841,000 4f 0.1% 0.0% 0.0% 0.2%

Baton Rouge, LA 831,000 4f 0.1% 0.0% 0.1% 0.2%

Cape Coral-Fort Myers, FL 715,000 4f 0.1% 0.0% 0.0% 0.1%

Colorado Springs, CO 681,000 4f 0.1% 0.0% 0.1% 0.1%

Ogden-Clearfield, UT 646,000 4f 0.1% 0.0% 0.0% 0.0%

Wichita, KS 629,000 4f 0.1% 0.0% 0.1% 0.2%

Deltona-Daytona Beach-Ormond Beach, FL 624,000 4f 0.2% 0.0% 0.0% 0.0%

Jackson, MS 585,000 4f 0.2% 0.0% 0.0% 0.0%

Palm Bay-Melbourne-Titusville, FL 567,000 4f 0.1% 0.0% 0.0% 0.0%

Youngstown-Warren-Boardman, OH-PA 538,000 4f 0.1% 0.0% 0.0% 0.0%

Santa Rosa-Petaluma, CA 498,000 4f 0.1% 0.0% 0.7% 0.5%

Fayetteville-Springdale-Rogers, AR 497,000 4f 0.1% 0.0% 0.0% 0.1%

Lafayette, LA 479,000 4f 0.1% 0.0% 0.0% 0.0%

Fayetteville, NC 475,000 4f 0.0% 0.0% 0.0% 0.0%
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Pensacola-Ferry Pass-Brent, FL 458,000 4f 0.1% 0.0% 0.0% 0.0%

Port St. Lucie, FL 457,000 4f 0.0% 0.0% 0.1% 0.2%

Visalia, CA 456,000 4f 0.0% 0.0% 0.8% 0.0%

Myrtle Beach-Conway-North Myrtle Beach, SC-NC 435,000 4f 0.0% 0.0% 0.0% 0.0%

Mobile, AL 423,000 4f 0.1% 0.0% 0.0% 0.1%

Salem, OR 413,000 4f 0.1% 0.0% 0.7% 0.1%

Brownsville-Harlingen, TX 412,000 4f 0.2% 0.0% 0.0% 0.0%

Flint, MI 406,000 4f 0.2% 0.0% 0.0% 0.1%

Killeen-Temple, TX 403,000 4f 0.1% 0.0% 0.0% 0.1%

Gulfport-Biloxi, MS 394,000 4f 0.0% 0.0% 0.0% 0.0%

Salisbury, MD-DE 394,000 4f 0.0% 0.0% 0.0% 0.0%

Beaumont-Port Arthur, TX 388,000 4f 0.1% 0.0% 0.0% 0.0%

Shreveport-Bossier City, LA 382,000 4f 0.2% 0.0% 0.0% 0.1%

Davenport-Moline-Rock Island, IA-IL 376,000 4f 0.1% 0.0% 0.0% 0.2%

Savannah, GA 370,000 4f 0.1% 0.0% 0.7% 0.1%

Hickory-Lenoir-Morganton, NC 361,000 4f 0.0% 0.0% 0.0% 0.0%

Montgomery, AL 360,000 4f 0.0% 0.0% 0.0% 0.0%

Naples-Marco Island, FL 359,000 4f 0.1% 0.0% 1.1% 0.0%

Ocala, FL 343,000 4f 0.1% 0.0% 0.0% 0.0%

Lubbock, TX 310,000 4f 0.1% 0.4% 0.0% 0.0%

Kingsport-Bristol, TN-VA 299,000 4f 0.2% 0.0% 0.0% 0.0%

Spartanburg, SC 298,000 4f 0.0% 0.0% 0.0% 0.1%

Columbus, GA-AL 295,000 4f 0.1% 0.0% 0.0% 0.0%

Greeley, CO 291,000 4f 0.2% 0.0% 0.0% 0.0%

Kennewick-Richland, WA 282,000 4f 0.2% 0.0% 0.0% 0.0%

Hagerstown-Martinsburg, MD-WV 277,000 4f 0.0% 0.0% 2.3% 0.0%

Longview, TX 275,000 4f 0.1% 0.0% 0.0% 0.1%

Clarksville, TN-KY 270,000 4f 0.0% 0.0% 0.0% 0.0%

Laredo, TX 268,000 4f 0.0% 0.0% 0.7% 0.2%

Merced, CA 267,000 4f 0.0% 0.0% 0.0% 0.0%

Norwich-New London, CT 262,000 4f 0.0% 0.0% 0.5% 0.0%

Lynchburg, VA 257,000 4f 0.0% 0.0% 0.0% 0.2%

Bremerton-Silverdale-Port Orchard, WA 253,000 4f 0.0% 0.0% 0.0% 0.0%

Crestview-Fort Walton Beach-Destin, FL 247,000 4f 0.0% 0.0% 0.0% 0.0%
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Tuscaloosa, AL 243,000 4f 0.0% 0.0% 0.0% 0.1%

Fort Smith, AR-OK 240,000 4f 0.0% 0.0% 0.0% 0.0%

Appleton, WI 232,000 4f 0.0% 0.0% 0.0% 0.3%

Barnstable Town, MA 212,000 4f 0.2% 0.0% 0.0% 0.0%

Las Cruces, NM 211,000 4f 0.0% 0.0% 0.0% 0.4%

Houma-Thibodaux, LA 205,000 4f 0.0% 0.0% 0.0% 0.0%

Elkhart-Goshen, IN 202,000 4f 0.1% 0.0% 0.0% 0.0%

Lake Charles, LA 202,000 4f 0.0% 0.0% 0.0% 0.0%

Athens-Clarke County, GA 202,000 4f 0.0% 0.0% 1.5% 0.4%

Daphne-Fairhope-Foley, AL 200,000 4f 0.0% 0.0% 0.0% 0.0%

Lake Havasu City-Kingman, AZ 200,000 4f 0.0% 0.0% 0.0% 0.0%

Yuma, AZ 200,000 4f 0.1% 0.6% 0.0% 0.0%

Johnson City, TN 199,000 4f 0.2% 0.0% 0.0% 0.0%

Florence, SC 198,000 4f 0.0% 0.0% 0.0% 0.0%

Hilton Head Island-Bluffton, SC 198,000 4f 0.0% 0.0% 0.0% 0.0%

Monroe, LA 198,000 4f 0.1% 0.0% 0.0% 0.1%

Racine, WI 195,000 4f 0.0% 0.0% 0.9% 0.5%

Hilo, HI 186,000 4f 0.0% 0.0% 0.0% 0.0%

Torrington, CT 181,000 4f 0.0% 0.0% 0.0% 0.0%

Redding, CA 177,000 4f 0.0% 0.0% 0.3% 0.0%

Panama City, FL 177,000 4f 0.0% 0.0% 0.0% 0.0%

Billings, MT 175,000 4f 0.0% 0.0% 0.0% 0.3%

Kingston, NY 174,000 4f 0.0% 0.0% 1.6% 0.0%

Joplin, MO 174,000 4f 0.1% 0.0% 0.0% 0.0%

Warner Robins, GA 173,000 4f 0.0% 0.0% 0.0% 0.0%

Jackson, TN 173,000 4f 0.0% 0.0% 0.0% 0.0%

Muskegon, MI 172,000 4f 0.1% 0.0% 0.0% 0.0%

Dover, DE 171,000 4f 0.0% 0.0% 0.0% 0.0%

Waterloo-Cedar Falls, IA 168,000 4f 0.1% 0.0% 0.0% 0.0%

Yuba City, CA 166,000 4f 0.0% 0.0% 0.0% 0.0%

East Stroudsburg, PA 165,000 4f 0.0% 0.0% 0.0% 0.0%

Midland, TX 164,000 4f 0.0% 0.0% 0.0% 0.0%

Hattiesburg, MS 161,000 4f 0.0% 0.0% 0.0% 0.0%

Tupelo, MS 160,000 4f 0.1% 0.0% 0.0% 0.2%
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Burlington, NC 159,000 4f 0.1% 0.0% 0.0% 0.2%

St. George, UT 159,000 4f 0.0% 0.0% 0.0% 0.0%

Jacksonville, NC 158,000 4f 0.0% 0.0% 0.0% 0.0%

Auburn-Opelika, AL 157,000 4f 0.0% 0.0% 0.0% 0.0%

Odessa, TX 155,000 4f 0.0% 0.0% 0.0% 0.0%

Madera, CA 153,000 4f 0.0% 0.0% 0.0% 0.0%

Coeur d’Alene, ID 151,000 4f 0.0% 0.0% 0.0% 0.2%

Vineland-Bridgeton, NJ 151,000 4f 0.0% 0.0% 1.0% 0.0%

Chambersburg-Waynesboro, PA 149,000 4f 0.0% 0.0% 0.9% 0.0%

Sebastian-Vero Beach, FL 148,000 4f 0.0% 0.0% 0.0% 0.0%

Monroe, MI 148,000 4f 0.0% 0.0% 0.0% 0.0%

Ottawa, IL 146,000 4f 0.0% 0.0% 0.0% 0.0%

Albany, GA 146,000 4f 0.1% 0.0% 0.0% 0.0%

Dothan, AL 145,000 4f 0.0% 0.0% 0.0% 0.0%

London, KY 145,000 4f 0.0% 0.0% 0.0% 0.0%

Decatur, AL 144,000 4f 0.0% 0.0% 0.0% 0.0%

Texarkana, TX-AR 144,000 4f 0.0% 0.0% 0.0% 0.0%

Rocky Mount, NC 144,000 4f 0.0% 0.0% 0.0% 0.0%

Florence-Muscle Shoals, AL 142,000 4f 0.0% 0.0% 0.0% 0.6%

Wichita Falls, TX 142,000 4f 0.2% 0.0% 0.0% 0.0%

Idaho Falls, ID 141,000 4f 0.0% 0.0% 0.0% 0.0%

Sioux City, IA-NE-SD 141,000 4f 0.0% 0.0% 0.0% 0.1%

Hanford-Corcoran, CA 141,000 4f 0.0% 0.0% 0.0% 0.0%

Homosassa Springs, FL 140,000 4f 0.0% 0.0% 0.0% 0.0%

Pottsville, PA 140,000 4f 0.0% 0.0% 1.2% 0.0%

Valdosta, GA 140,000 4f 0.0% 0.0% 0.0% 0.0%

Napa, CA 140,000 4f 0.0% 0.0% 0.0% 0.5%

Morristown, TN 138,000 4f 0.0% 0.0% 0.0% 0.0%

Wheeling, WV-OH 138,000 4f 0.0% 0.0% 0.0% 0.2%

Carbondale-Marion, IL 135,000 4f 0.0% 0.0% 0.8% 0.0%

Logan, UT-ID 134,000 4f 0.0% 0.0% 0.0% 0.3%

Elizabethtown-Fort Knox, KY 134,000 4f 0.0% 0.0% 0.0% 0.0%

Eureka-Arcata, CA 133,000 4f 0.0% 0.0% 0.0% 0.0%

Springfield, OH 133,000 4f 0.0% 0.0% 0.0% 0.0%
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Sumter, SC 133,000 4f 0.0% 0.0% 0.0% 0.0%

Battle Creek, MI 132,000 4f 0.0% 0.0% 0.0% 0.0%

Harrisonburg, VA 132,000 4f 0.0% 0.0% 0.0% 0.0%

Lumberton, NC 130,000 4f 0.0% 0.0% 0.0% 0.0%

Hammond, LA 128,000 4f 0.0% 0.0% 0.0% 0.0%

Jamestown-Dunkirk-Fredonia, NY 126,000 4f 0.0% 0.0% 0.6% 0.0%

Sherman-Denison, TX 124,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Vernon-Anacortes, WA 123,000 4f 0.0% 0.0% 0.0% 0.0%

Altoona, PA 122,000 4f 0.0% 0.0% 0.0% 0.0%

Ames, IA 121,000 4f 0.0% 0.0% 0.0% 0.0%

Staunton, VA 120,000 4f 0.0% 0.0% 0.0% 0.0%

Mansfield, OH 120,000 4f 0.0% 0.0% 0.0% 0.0%

The Villages, FL 119,000 4f 0.0% 0.0% 0.0% 0.0%

Augusta-Waterville, ME 119,000 4f 0.0% 0.0% 0.0% 0.0%

Goldsboro, NC 118,000 4f 0.0% 0.0% 0.0% 0.0%

Albany-Lebanon, OR 118,000 4f 0.0% 0.0% 0.0% 0.5%

Cleveland, TN 118,000 4f 0.0% 0.0% 0.0% 0.0%

Beckley, WV 117,000 4f 0.0% 0.0% 0.0% 0.0%

Lawrence, KS 117,000 4f 0.0% 0.0% 0.0% 0.3%

Weirton-Steubenville, WV-OH 116,000 4f 0.0% 0.0% 0.0% 0.0%

Manhattan, KS 116,000 4f 0.0% 0.0% 0.0% 0.0%

Wenatchee, WA 115,000 4f 0.0% 0.0% 0.0% 0.6%

New Bern, NC 115,000 4f 0.0% 0.0% 0.0% 0.0%

Wooster, OH 114,000 4f 0.0% 0.0% 0.0% 0.0%

Sierra Vista-Douglas, AZ 114,000 4f 0.0% 0.0% 0.0% 0.0%

Holland, MI 113,000 4f 0.0% 0.0% 0.0% 0.0%

Brunswick, GA 113,000 4f 0.2% 0.0% 0.0% 0.0%

Lawton, OK 113,000 4f 0.0% 0.0% 0.0% 0.0%

Sheboygan, WI 113,000 4f 0.0% 0.0% 0.0% 0.0%

Williamsport, PA 112,000 4f 0.0% 0.0% 0.0% 0.3%

Anniston-Oxford, AL 112,000 4f 0.0% 0.0% 0.0% 0.0%

Michigan City-La Porte, IN 109,000 4f 0.0% 0.0% 0.0% 0.0%

California-Lexington Park, MD 108,000 4f 0.0% 0.0% 0.0% 0.0%

Cookeville, TN 107,000 4f 0.0% 0.0% 0.0% 0.0%

Continued on next page

594



Table I.2 – Continued from previous page

CBSA Name Total Jobs ID HD
Pop.

MD
Large
Apt.
Pop.

MD
Small
Apt.
Pop.

MD
Comm.
Pop.

Bluefield, WV-VA 107,000 4f 0.0% 0.0% 0.0% 0.0%

Roseburg, OR 105,000 4f 0.1% 0.0% 0.0% 0.0%

Twin Falls, ID 105,000 4f 0.0% 0.0% 0.0% 0.0%

Ogdensburg-Massena, NY 104,000 4f 0.0% 0.0% 0.0% 0.0%

Bay City, MI 104,000 4f 0.0% 0.0% 0.0% 0.0%

Lima, OH 102,000 4f 0.0% 0.0% 0.0% 0.0%

Show Low, AZ 102,000 4f 0.0% 0.0% 0.0% 0.0%

Whitewater, WI 101,000 4f 0.0% 0.0% 0.0% 0.0%

Danville, VA 101,000 4f 0.0% 0.0% 0.0% 0.0%

Sebring-Avon Park, FL 101,000 4f 0.0% 0.0% 0.0% 0.0%

Gadsden, AL 101,000 4f 0.0% 0.0% 0.0% 0.4%

LaGrange, GA-AL 101,000 4f 0.0% 0.0% 0.0% 0.0%

Fond du Lac, WI 101,000 4f 0.0% 0.0% 0.0% 0.0%

Gettysburg, PA 100,000 4f 0.0% 0.0% 0.0% 0.0%

Salem, OH 100,000 4f 0.0% 0.0% 0.0% 0.0%

Richmond-Berea, KY 100,000 4f 0.0% 0.0% 0.0% 0.0%

Watertown-Fort Drum, NY 98,000 4f 0.0% 0.0% 0.0% 0.0%

Tullahoma-Manchester, TN 98,000 4f 0.0% 0.0% 0.0% 0.0%

Meridian, MS 98,000 4f 0.0% 0.0% 0.0% 0.0%

Cumberland, MD-WV 97,000 4f 0.0% 0.0% 0.0% 0.0%

Truckee-Grass Valley, CA 97,000 4f 0.0% 0.0% 0.0% 0.0%

Adrian, MI 96,000 4f 0.0% 0.0% 0.0% 0.0%

Shelby, NC 96,000 4f 0.0% 0.0% 0.0% 0.0%

Hot Springs, AR 96,000 4f 0.0% 0.0% 0.0% 0.0%

Ashtabula, OH 95,000 4f 0.0% 0.0% 0.0% 0.0%

Sevierville, TN 95,000 4f 0.0% 0.0% 0.0% 0.0%

Pinehurst-Southern Pines, NC 94,000 4f 0.0% 0.0% 0.0% 0.0%

Corning, NY 94,000 4f 0.0% 0.0% 0.0% 0.4%

Paducah, KY-IL 94,000 4f 0.0% 0.0% 0.0% 0.0%

Cheyenne, WY 93,000 4f 0.0% 0.0% 0.0% 0.0%

Moses Lake, WA 93,000 4f 0.0% 0.0% 0.0% 0.0%

Albertville, AL 92,000 4f 0.0% 0.0% 0.0% 0.0%

Pocatello, ID 92,000 4f 0.0% 0.0% 0.0% 0.0%

New Philadelphia-Dover, OH 91,000 4f 0.0% 0.0% 0.0% 0.0%
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Clarksburg, WV 91,000 4f 0.0% 0.0% 0.0% 0.0%

Brainerd, MN 90,000 4f 0.0% 0.0% 0.0% 0.0%

Ocean City, NJ 89,000 4f 0.0% 0.0% 0.0% 0.0%

Pine Bluff, AR 88,000 4f 0.2% 0.0% 0.0% 0.0%

Beaver Dam, WI 86,000 4f 0.0% 0.0% 0.0% 0.0%

New Castle, PA 86,000 4f 0.0% 0.0% 0.0% 0.0%

Parkersburg-Vienna, WV 86,000 4f 0.0% 0.0% 0.0% 0.2%

Orangeburg, SC 86,000 4f 0.0% 0.0% 0.0% 0.0%

Lufkin, TX 85,000 4f 0.0% 0.0% 0.0% 0.0%

Hermiston-Pendleton, OR 85,000 4f 0.0% 0.0% 0.0% 0.0%

Elmira, NY 84,000 4f 0.0% 0.0% 1.5% 0.0%

Zanesville, OH 84,000 4f 0.0% 0.0% 0.0% 0.0%

Grants Pass, OR 84,000 4f 0.0% 0.0% 0.0% 0.0%

Watertown-Fort Atkinson, WI 83,000 4f 0.0% 0.0% 0.0% 0.0%

Meadville, PA 83,000 4f 0.0% 0.0% 1.2% 0.0%

Ukiah, CA 83,000 4f 0.0% 0.0% 0.0% 0.0%

Russellville, AR 82,000 4f 0.0% 0.0% 0.0% 0.0%

Laurel, MS 82,000 4f 0.0% 0.0% 0.0% 0.0%

Midland, MI 82,000 4f 0.0% 0.0% 0.0% 0.0%

Kokomo, IN 82,000 4f 0.0% 0.0% 0.0% 0.0%

Opelousas, LA 81,000 4f 0.0% 0.0% 0.0% 0.0%

Wilson, NC 80,000 4f 0.0% 0.0% 0.0% 0.0%

Columbus, IN 79,000 4f 0.0% 0.0% 0.0% 0.0%

Manitowoc, WI 79,000 4f 0.0% 0.0% 0.0% 0.0%

Cullman, AL 79,000 4f 0.0% 0.0% 0.0% 0.0%

Casper, WY 78,000 4f 0.0% 0.0% 0.0% 0.3%

DuBois, PA 77,000 4f 0.0% 0.0% 0.0% 0.0%

Helena, MT 77,000 4f 0.0% 0.0% 0.0% 0.0%

Talladega-Sylacauga, AL 77,000 4f 0.0% 0.0% 0.0% 0.0%

Danville, IL 77,000 4f 0.0% 0.0% 0.0% 0.0%

Athens, TX 76,000 4f 0.0% 0.0% 0.0% 0.0%

Auburn, NY 75,000 4f 0.0% 0.0% 1.5% 0.0%

Searcy, AR 75,000 4f 0.0% 0.0% 0.0% 0.0%

Chillicothe, OH 75,000 4f 0.0% 0.0% 0.0% 0.0%
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Centralia, WA 74,000 4f 0.0% 0.0% 0.0% 0.0%

Portsmouth, OH 74,000 4f 0.0% 0.0% 0.0% 0.0%

Olean, NY 74,000 4f 0.0% 0.0% 0.0% 0.0%

Oak Harbor, WA 74,000 4f 0.0% 0.0% 0.0% 0.0%

Sandusky, OH 74,000 4f 0.0% 0.0% 0.0% 0.0%

Statesboro, GA 74,000 4f 0.0% 0.0% 0.0% 0.0%

Port Angeles, WA 73,000 4f 0.0% 0.0% 0.0% 0.0%

Seneca, SC 73,000 4f 0.0% 0.0% 0.0% 0.0%

Grand Island, NE 72,000 4f 0.0% 0.0% 0.0% 0.0%

Somerset, PA 72,000 4f 0.0% 0.0% 0.0% 0.0%

Warsaw, IN 71,000 4f 0.0% 0.0% 0.0% 0.0%

Minot, ND 71,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Airy, NC 71,000 4f 0.0% 0.0% 0.0% 0.0%

Palatka, FL 71,000 4f 0.0% 0.0% 0.0% 0.0%

Huntsville, TX 70,000 4f 0.0% 0.0% 0.0% 0.0%

Aberdeen, WA 70,000 4f 0.0% 0.0% 0.0% 0.0%

Heber, UT 70,000 4f 0.0% 0.0% 0.0% 0.0%

Roanoke Rapids, NC 70,000 4f 0.0% 0.0% 0.0% 0.0%

Kapaa, HI 70,000 4f 0.0% 0.0% 0.0% 0.0%

Fort Payne, AL 69,000 4f 0.0% 0.0% 0.0% 0.0%

Stevens Point, WI 69,000 4f 0.0% 0.0% 0.0% 0.0%

Gallup, NM 69,000 4f 0.0% 0.0% 0.0% 0.0%

Greenwood, SC 69,000 4f 0.0% 0.0% 0.0% 0.0%

Shawnee, OK 69,000 4f 0.0% 0.0% 0.0% 0.0%

Hobbs, NM 68,000 4f 0.0% 0.0% 0.0% 0.0%

Frankfort, KY 68,000 4f 0.0% 0.0% 0.0% 0.0%

Hinesville, GA 67,000 4f 0.0% 0.0% 0.0% 0.0%

Lake City, FL 67,000 4f 0.0% 0.0% 0.0% 0.0%

North Wilkesboro, NC 66,000 4f 0.0% 0.0% 0.0% 0.0%

Greeneville, TN 66,000 4f 0.0% 0.0% 0.0% 0.0%

Marquette, MI 66,000 4f 0.0% 0.0% 0.0% 0.0%

Farmington, MO 65,000 4f 0.0% 0.0% 0.0% 0.0%

Forest City, NC 65,000 4f 0.0% 0.0% 0.0% 0.0%

Richmond, IN 65,000 4f 0.0% 0.0% 0.0% 0.0%
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Klamath Falls, OR 65,000 4f 0.0% 0.0% 0.0% 0.0%

Faribault-Northfield, MN 65,000 4f 0.0% 0.0% 0.0% 0.0%

Jefferson, GA 65,000 4f 0.0% 0.0% 0.0% 0.0%

Marion, IN 65,000 4f 0.0% 0.0% 0.0% 0.0%

Athens, OH 64,000 4f 0.0% 0.0% 0.0% 0.0%

Morehead City, NC 64,000 4f 0.0% 0.0% 0.0% 0.0%

Marion, OH 64,000 4f 0.0% 0.0% 0.0% 0.0%

Roswell, NM 63,000 4f 0.0% 0.0% 0.0% 0.0%

Clearlake, CA 63,000 4f 0.0% 0.0% 0.0% 0.0%

Martinsville, VA 62,000 4f 0.0% 0.0% 0.0% 0.0%

Coos Bay, OR 62,000 4f 0.0% 0.0% 0.0% 0.0%

Somerset, KY 62,000 4f 0.0% 0.0% 0.0% 0.0%

Lewiston, ID-WA 62,000 4f 0.0% 0.0% 0.0% 0.0%

Charleston-Mattoon, IL 61,000 4f 0.0% 0.0% 0.0% 0.0%

Red Bluff, CA 61,000 4f 0.0% 0.0% 0.0% 0.0%

Dublin, GA 61,000 4f 0.0% 0.0% 0.0% 0.0%

Baraboo, WI 61,000 4f 0.0% 0.0% 0.0% 0.0%

Muskogee, OK 61,000 4f 0.0% 0.0% 0.0% 0.0%

Nacogdoches, TX 61,000 4f 0.0% 0.0% 0.0% 0.0%

Jasper, AL 60,000 4f 0.0% 0.0% 0.0% 0.0%

Marinette, WI-MI 60,000 4f 0.0% 0.0% 0.0% 0.0%

Enid, OK 60,000 4f 0.0% 0.0% 0.0% 0.0%

Sturgis, MI 60,000 4f 0.0% 0.0% 0.0% 0.0%

Shelton, WA 60,000 4f 0.0% 0.0% 0.0% 0.0%

Gillette, WY 60,000 4f 0.0% 0.0% 0.0% 0.0%

Hudson, NY 59,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Vernon, OH 59,000 4f 0.0% 0.0% 0.0% 0.0%

Rio Grande City-Roma, TX 59,000 4f 0.0% 0.0% 0.0% 0.0%

Walla Walla, WA 59,000 4f 0.0% 0.0% 0.0% 0.0%

Albemarle, NC 58,000 4f 0.0% 0.0% 0.0% 0.0%

Georgetown, SC 58,000 4f 0.0% 0.0% 0.0% 0.0%

Marietta, OH 58,000 4f 0.0% 0.0% 0.0% 0.0%

Fremont, OH 58,000 4f 0.0% 0.0% 0.0% 0.0%

Fort Madison-Keokuk, IA-IL-MO 58,000 4f 0.0% 0.0% 0.0% 0.0%
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Crossville, TN 58,000 4f 0.0% 0.0% 0.0% 0.0%

Sanford, NC 57,000 4f 0.0% 0.0% 0.0% 0.0%

Norwalk, OH 57,000 4f 0.0% 0.0% 0.0% 0.0%

Starkville, MS 57,000 4f 0.0% 0.0% 0.0% 0.0%

Batavia, NY 57,000 4f 0.0% 0.0% 0.0% 0.0%

Barre, VT 56,000 4f 0.0% 0.0% 0.0% 0.0%

Columbus, MS 56,000 4f 0.0% 0.0% 0.0% 0.0%

Kinston, NC 56,000 4f 0.0% 0.0% 0.0% 0.0%

Alamogordo, NM 56,000 4f 0.0% 0.0% 0.0% 0.0%

Carlsbad-Artesia, NM 56,000 4f 0.0% 0.0% 0.0% 0.0%

Granbury, TX 56,000 4f 0.0% 0.0% 0.0% 0.0%

Gaffney, SC 56,000 4f 0.0% 0.0% 0.0% 0.0%

Ardmore, OK 55,000 4f 0.0% 0.0% 0.0% 0.0%

Fergus Falls, MN 55,000 4f 0.0% 0.0% 0.0% 0.0%

Fairmont, WV 55,000 4f 0.0% 0.0% 0.0% 0.0%

Cullowhee, NC 55,000 4f 0.0% 0.0% 0.0% 0.0%

Calhoun, GA 55,000 4f 0.0% 0.0% 0.0% 0.0%

Sterling, IL 55,000 4f 0.0% 0.0% 0.0% 0.0%

Eagle Pass, TX 55,000 4f 0.0% 0.0% 0.0% 0.0%

Palestine, TX 55,000 4f 0.0% 0.0% 0.0% 0.0%

Kearney, NE 55,000 4f 0.0% 0.0% 0.0% 0.0%

Poplar Bluff, MO 55,000 4f 0.0% 0.0% 0.0% 0.0%

Carson City, NV 54,000 4f 0.0% 0.0% 0.0% 0.0%

Tiffin, OH 54,000 4f 0.0% 0.0% 0.0% 0.0%

Waycross, GA 54,000 4f 0.0% 0.0% 0.0% 0.0%

Branson, MO 54,000 4f 0.0% 0.0% 0.0% 0.0%

Sonora, CA 53,000 4f 0.0% 0.0% 0.0% 0.0%

Point Pleasant, WV-OH 53,000 4f 0.0% 0.0% 0.0% 0.0%

Gloversville, NY 53,000 4f 0.0% 0.0% 0.0% 0.0%

Jasper, IN 53,000 4f 0.0% 0.0% 0.0% 0.0%

Boone, NC 53,000 4f 0.0% 0.0% 0.0% 0.0%

Edwards, CO 53,000 4f 0.0% 0.0% 0.0% 0.0%

Durango, CO 53,000 4f 0.0% 0.0% 0.0% 0.4%

Oxford, MS 52,000 4f 0.0% 0.0% 0.0% 0.0%
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Ashland, OH 52,000 4f 0.0% 0.0% 0.0% 0.0%

Ontario, OR-ID 52,000 4f 0.0% 0.0% 0.0% 0.0%

Danville, KY 52,000 4f 0.0% 0.0% 0.0% 0.0%

Milledgeville, GA 52,000 4f 0.0% 0.0% 0.0% 0.0%

Fernley, NV 52,000 4f 0.0% 0.0% 0.0% 0.0%

Elko, NV 52,000 4f 0.0% 0.0% 0.0% 0.0%

Picayune, MS 51,000 4f 0.0% 0.0% 0.0% 0.0%

Bartlesville, OK 51,000 4f 0.0% 0.0% 0.0% 0.0%

Athens, TN 51,000 4f 0.0% 0.0% 0.0% 0.0%

Elizabeth City, NC 51,000 4f 0.0% 0.0% 0.0% 0.0%

Oil City, PA 51,000 4f 0.0% 0.0% 0.0% 0.0%

Jacksonville, TX 50,000 4f 0.0% 0.0% 0.0% 0.0%

Alice, TX 50,000 4f 0.0% 0.0% 0.0% 0.0%

Greenville, OH 50,000 4f 0.0% 0.0% 0.0% 0.0%

Kerrville, TX 50,000 4f 0.0% 0.0% 0.0% 0.0%

Glasgow, KY 50,000 4f 0.0% 0.0% 0.0% 0.0%

Rochelle, IL 50,000 4f 0.0% 0.0% 0.0% 0.0%

Platteville, WI 50,000 4f 0.0% 0.0% 0.0% 0.0%

Natchez, MS-LA 50,000 4f 0.0% 0.0% 0.0% 0.0%

Scottsboro, AL 50,000 4f 0.0% 0.0% 0.0% 0.0%

Douglas, GA 49,000 4f 0.0% 0.0% 0.0% 0.0%

Warrensburg, MO 49,000 4f 0.0% 0.0% 0.0% 0.0%

St. Marys, GA 49,000 4f 0.0% 0.0% 0.0% 0.0%

Amsterdam, NY 49,000 4f 0.0% 0.0% 0.0% 0.0%

Enterprise, AL 48,000 4f 0.0% 0.0% 0.0% 0.0%

Morgan City, LA 48,000 4f 0.0% 0.0% 0.0% 0.0%

Payson, AZ 48,000 4f 0.0% 0.0% 0.0% 0.0%

Pullman, WA 48,000 4f 0.0% 0.0% 0.0% 0.0%

Malone, NY 48,000 4f 0.0% 0.0% 0.0% 0.0%

Cedar City, UT 48,000 4f 0.0% 0.0% 0.0% 0.0%

Corsicana, TX 47,000 4f 0.0% 0.0% 0.0% 0.0%

Norfolk, NE 47,000 4f 0.0% 0.0% 0.0% 0.0%

Gardnerville Ranchos, NV 47,000 4f 0.0% 0.0% 0.0% 0.0%

Cortland, NY 47,000 4f 0.0% 0.0% 0.0% 0.0%
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New Castle, IN 47,000 4f 0.0% 0.0% 0.0% 0.0%

Cadillac, MI 47,000 4f 0.0% 0.0% 0.0% 0.0%

Newport, OR 47,000 4f 0.0% 0.0% 0.0% 0.0%

Paris, TX 47,000 4f 0.0% 0.0% 0.0% 0.0%

Clovis, NM 47,000 4f 0.0% 0.0% 0.0% 0.0%

Del Rio, TX 47,000 4f 0.0% 0.0% 0.0% 0.0%

Tahlequah, OK 46,000 4f 0.0% 0.0% 0.0% 0.0%

Clinton, IA 46,000 4f 0.0% 0.0% 0.0% 0.0%

Ruston, LA 46,000 4f 0.0% 0.0% 0.0% 0.0%

Kendallville, IN 46,000 4f 0.0% 0.0% 0.0% 0.0%

Sidney, OH 46,000 4f 0.0% 0.0% 0.0% 0.0%

Washington, NC 46,000 4f 0.0% 0.0% 0.0% 0.0%

Shelbyville, TN 46,000 4f 0.0% 0.0% 0.0% 0.0%

Plymouth, IN 45,000 4f 0.0% 0.0% 0.0% 0.0%

Lewistown, PA 45,000 4f 0.0% 0.0% 1.8% 0.0%

Nogales, AZ 45,000 4f 0.0% 0.0% 0.0% 0.0%

Montrose, CO 45,000 4f 0.0% 0.0% 0.0% 0.0%

Canon City, CO 45,000 4f 0.0% 0.0% 0.0% 0.0%

Burlington, IA-IL 45,000 4f 0.0% 0.0% 0.0% 0.0%

Wapakoneta, OH 45,000 4f 0.0% 0.0% 0.0% 0.0%

Freeport, IL 45,000 4f 0.0% 0.0% 0.0% 0.0%

Hillsdale, MI 45,000 4f 0.0% 0.0% 0.0% 0.0%

Alexander City, AL 45,000 4f 0.0% 0.0% 0.0% 0.0%

Bemidji, MN 45,000 4f 0.0% 0.0% 0.0% 0.0%

Greenville, MS 45,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Sterling, KY 44,000 4f 0.0% 0.0% 0.0% 0.0%

Moultrie, GA 44,000 4f 0.0% 0.0% 0.0% 0.0%

Red Wing, MN 44,000 4f 0.0% 0.0% 0.0% 0.0%

Shawano, WI 44,000 4f 0.0% 0.0% 0.0% 0.0%

Bellefontaine, OH 44,000 4f 0.0% 0.0% 0.0% 0.0%

Lewisburg, PA 44,000 4f 0.0% 0.0% 0.0% 0.0%

Huntingdon, PA 44,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Pleasant, TX 44,000 4f 0.0% 0.0% 0.0% 0.0%

Blackfoot, ID 44,000 4f 0.0% 0.0% 0.0% 0.0%
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Rolla, MO 44,000 4f 0.0% 0.0% 0.0% 0.0%

Bedford, IN 44,000 4f 0.0% 0.0% 0.0% 0.0%

Cornelia, GA 44,000 4f 0.0% 0.0% 0.0% 0.0%

Grand Rapids, MN 44,000 4f 0.0% 0.0% 0.0% 0.0%

Marion, NC 44,000 4f 0.0% 0.0% 0.0% 0.0%

Henderson, NC 43,000 4f 0.0% 0.0% 0.0% 0.0%

Rock Springs, WY 43,000 4f 0.0% 0.0% 0.0% 0.0%

Harrison, AR 43,000 4f 0.0% 0.0% 0.0% 0.0%

Ponca City, OK 43,000 4f 0.0% 0.0% 0.0% 0.0%

Ellensburg, WA 43,000 4f 0.0% 0.0% 0.0% 0.0%

Menomonie, WI 43,000 4f 0.0% 0.0% 0.0% 0.0%

Burley, ID 43,000 4f 0.0% 0.0% 0.0% 0.0%

Bogalusa, LA 43,000 4f 0.0% 0.0% 0.0% 0.0%

Rockingham, NC 43,000 4f 0.0% 0.0% 0.0% 0.0%

Coldwater, MI 43,000 4f 0.0% 0.0% 0.0% 0.0%

Madisonville, KY 42,000 4f 0.0% 0.0% 0.0% 0.0%

Big Rapids, MI 42,000 4f 0.0% 0.0% 0.0% 0.0%

Big Stone Gap, VA 42,000 4f 0.0% 0.0% 0.0% 0.0%

Durant, OK 42,000 4f 0.0% 0.0% 0.0% 0.0%

Pahrump, NV 42,000 4f 0.0% 0.0% 0.0% 0.0%

Vicksburg, MS 42,000 4f 0.0% 0.0% 0.0% 0.0%

Sandpoint, ID 42,000 4f 0.0% 0.0% 0.0% 0.0%

Willmar, MN 42,000 4f 0.0% 0.0% 0.0% 0.0%

Ozark, AL 42,000 4f 0.0% 0.0% 0.0% 0.0%

Duncan, OK 42,000 4f 0.0% 0.0% 0.0% 0.0%

Seymour, IN 42,000 4f 0.0% 0.0% 0.0% 0.0%

Auburn, IN 41,000 4f 0.0% 0.0% 0.0% 0.0%

McAlester, OK 41,000 4f 0.0% 0.0% 0.0% 0.0%

Lawrenceburg, TN 41,000 4f 0.0% 0.0% 0.0% 0.0%

Bucyrus-Galion, OH 41,000 4f 0.0% 0.0% 0.0% 0.0%

Aberdeen, SD 41,000 4f 0.0% 0.0% 0.0% 0.0%

Bardstown, KY 41,000 4f 0.0% 0.0% 0.0% 0.0%

Muscatine, IA 41,000 4f 0.0% 0.0% 0.0% 0.0%

Cedartown, GA 41,000 4f 0.0% 0.0% 0.0% 0.0%
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Alma, MI 40,000 4f 0.0% 0.0% 0.0% 0.0%

El Campo, TX 40,000 4f 0.0% 0.0% 0.0% 0.0%

Blytheville, AR 40,000 4f 0.0% 0.0% 0.0% 0.0%

Stephenville, TX 40,000 4f 0.0% 0.0% 0.0% 0.0%

Garden City, KS 40,000 4f 0.0% 0.0% 0.0% 0.0%

Okeechobee, FL 40,000 4f 0.0% 0.0% 0.0% 0.0%

Sedalia, MO 40,000 4f 0.0% 0.0% 0.0% 0.0%

Bradford, PA 40,000 4f 0.0% 0.0% 0.0% 0.0%

Tifton, GA 40,000 4f 0.0% 0.0% 0.0% 0.0%

Celina, OH 40,000 4f 0.0% 0.0% 0.0% 0.0%

Marshalltown, IA 39,000 4f 0.0% 0.0% 0.0% 0.0%

Wilmington, OH 39,000 4f 0.0% 0.0% 0.0% 0.0%

Selinsgrove, PA 39,000 4f 0.0% 0.0% 0.0% 0.0%

Riverton, WY 39,000 4f 0.0% 0.0% 0.0% 0.0%

Clewiston, FL 39,000 4f 0.0% 0.0% 0.0% 0.0%

Austin, MN 39,000 4f 0.0% 0.0% 0.0% 0.0%

Jacksonville, IL 39,000 4f 0.0% 0.0% 0.0% 0.0%

El Dorado, AR 39,000 4f 0.0% 0.0% 0.0% 0.0%

McComb, MS 39,000 4f 0.0% 0.0% 0.0% 0.0%

Warren, PA 39,000 4f 0.0% 0.0% 0.0% 0.0%

West Plains, MO 39,000 4f 0.0% 0.0% 0.0% 0.0%

Moscow, ID 38,000 4f 0.0% 0.0% 0.0% 0.0%

Selma, AL 38,000 4f 0.0% 0.0% 0.0% 0.0%

Greenwood, MS 38,000 4f 0.0% 0.0% 0.0% 0.0%

Hannibal, MO 38,000 4f 0.0% 0.0% 0.0% 0.0%

Lock Haven, PA 38,000 4f 0.0% 0.0% 0.0% 0.0%

Gainesville, TX 38,000 4f 0.0% 0.0% 0.0% 0.0%

Cambridge, OH 38,000 4f 0.0% 0.0% 0.0% 0.0%

Houghton, MI 38,000 4f 0.0% 0.0% 0.0% 0.0%

Sikeston, MO 38,000 4f 0.0% 0.0% 0.0% 0.0%

Scottsbluff, NE 38,000 4f 0.0% 0.0% 0.0% 0.0%

Urbana, OH 37,000 4f 0.0% 0.0% 0.0% 0.0%

Astoria, OR 37,000 4f 0.0% 0.0% 0.0% 0.0%

Defiance, OH 37,000 4f 0.0% 0.0% 0.0% 0.0%
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Logansport, IN 37,000 4f 0.0% 0.0% 0.0% 0.0%

Minden, LA 37,000 4f 0.0% 0.0% 0.0% 0.0%

Murray, KY 37,000 4f 0.0% 0.0% 0.0% 0.0%

Laramie, WY 37,000 4f 0.0% 0.0% 0.0% 0.0%

McMinnville, TN 37,000 4f 0.0% 0.0% 0.0% 0.0%

Crawfordsville, IN 37,000 4f 0.0% 0.0% 0.0% 0.0%

Newberry, SC 37,000 4f 0.0% 0.0% 0.0% 0.0%

Sault Ste. Marie, MI 37,000 4f 0.0% 0.0% 0.0% 0.0%

Espanola, NM 37,000 4f 0.0% 0.0% 0.0% 0.0%

Fort Polk South, LA 37,000 4f 0.0% 0.0% 0.0% 0.0%

Vincennes, IN 37,000 4f 0.0% 0.0% 0.0% 0.0%

Ada, OK 37,000 4f 0.0% 0.0% 0.0% 0.0%

Bay City, TX 36,000 4f 0.0% 0.0% 0.0% 0.0%

Alexandria, MN 36,000 4f 0.0% 0.0% 0.0% 0.0%

DeRidder, LA 36,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Vernon, IL 36,000 4f 0.0% 0.0% 0.0% 0.0%

Corinth, MS 36,000 4f 0.0% 0.0% 0.0% 0.0%

North Platte, NE 36,000 4f 0.0% 0.0% 0.0% 0.0%

Dyersburg, TN 36,000 4f 0.0% 0.0% 0.0% 0.0%

Fort Dodge, IA 36,000 4f 0.0% 0.0% 0.0% 0.0%

Owatonna, MN 36,000 4f 0.0% 0.0% 0.0% 0.0%

Fort Leonard Wood, MO 36,000 4f 0.0% 0.0% 0.0% 0.0%

Escanaba, MI 36,000 4f 0.0% 0.0% 0.0% 0.0%

Pontiac, IL 35,000 4f 0.0% 0.0% 0.0% 0.0%

Huntington, IN 35,000 4f 0.0% 0.0% 0.0% 0.0%

Vernal, UT 35,000 4f 0.0% 0.0% 0.0% 0.0%

Atmore, AL 35,000 4f 0.0% 0.0% 0.0% 0.0%

Emporia, KS 35,000 4f 0.0% 0.0% 0.0% 0.0%

Sulphur Springs, TX 35,000 4f 0.0% 0.0% 0.0% 0.0%

Coshocton, OH 35,000 4f 0.0% 0.0% 0.0% 0.0%

Kill Devil Hills, NC 35,000 4f 0.0% 0.0% 0.0% 0.0%

Bennington, VT 35,000 4f 0.0% 0.0% 0.0% 0.0%

Vidalia, GA 35,000 4f 0.0% 0.0% 0.0% 0.0%

Hutchinson, MN 35,000 4f 0.0% 0.0% 0.0% 0.0%
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Campbellsville, KY 35,000 4f 0.0% 0.0% 0.0% 0.0%

Brownwood, TX 35,000 4f 0.0% 0.0% 0.0% 0.0%

Ottumwa, IA 35,000 4f 0.0% 0.0% 0.0% 0.0%

Winfield, KS 35,000 4f 0.0% 0.0% 0.0% 0.0%

Safford, AZ 35,000 4f 0.0% 0.0% 0.0% 0.0%

Arcadia, FL 35,000 4f 0.0% 0.0% 0.0% 0.0%

Lebanon, MO 35,000 4f 0.0% 0.0% 0.0% 0.0%

Americus, GA 34,000 4f 0.0% 0.0% 0.0% 0.0%

Decatur, IN 34,000 4f 0.0% 0.0% 0.0% 0.0%

Big Spring, TX 34,000 4f 0.0% 0.0% 0.0% 0.0%

Mayfield, KY 34,000 4f 0.0% 0.0% 0.0% 0.0%

Natchitoches, LA 34,000 4f 0.0% 0.0% 0.0% 0.0%

Dixon, IL 34,000 4f 0.0% 0.0% 0.0% 0.0%

Peru, IN 34,000 4f 0.0% 0.0% 0.0% 0.0%

Angola, IN 34,000 4f 0.0% 0.0% 0.0% 0.0%

Laurinburg, NC 34,000 4f 0.0% 0.0% 0.0% 0.0%

Plainview, TX 33,000 4f 0.0% 0.0% 0.0% 0.0%

Williston, ND 33,000 4f 0.0% 0.0% 0.0% 0.0%

Brookhaven, MS 33,000 4f 0.0% 0.0% 0.0% 0.0%

Effingham, IL 33,000 4f 0.0% 0.0% 0.0% 0.0%

Dodge City, KS 33,000 4f 0.0% 0.0% 0.0% 0.0%

Brenham, TX 33,000 4f 0.0% 0.0% 0.0% 0.0%

Newport, TN 33,000 4f 0.0% 0.0% 0.0% 0.0%

Brevard, NC 33,000 4f 0.0% 0.0% 0.0% 0.0%

Taylorville, IL 33,000 4f 0.0% 0.0% 0.0% 0.0%

Columbus, NE 32,000 4f 0.0% 0.0% 0.0% 0.0%

Coffeyville, KS 32,000 4f 0.0% 0.0% 0.0% 0.0%

Watertown, SD 32,000 4f 0.0% 0.0% 0.0% 0.0%

Brookings, SD 32,000 4f 0.0% 0.0% 0.0% 0.0%

Pella, IA 32,000 4f 0.0% 0.0% 0.0% 0.0%

Malvern, AR 32,000 4f 0.0% 0.0% 0.0% 0.0%

Bonham, TX 32,000 4f 0.0% 0.0% 0.0% 0.0%

Mount Gay-Shamrock, WV 32,000 4f 0.0% 0.0% 0.0% 0.0%

Troy, AL 32,000 4f 0.0% 0.0% 0.0% 0.0%
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Washington, IN 32,000 4f 0.0% 0.0% 0.0% 0.0%

Dayton, TN 32,000 4f 0.0% 0.0% 0.0% 0.0%

Martin, TN 32,000 4f 0.0% 0.0% 0.0% 0.0%

Beeville, TX 32,000 4f 0.0% 0.0% 0.0% 0.0%

Taos, NM 32,000 4f 0.0% 0.0% 0.0% 0.0%

Cleveland, MS 31,000 4f 0.0% 0.0% 0.0% 0.0%

Berlin, NH 31,000 4f 0.0% 0.0% 0.0% 0.0%

Frankfort, IN 31,000 4f 0.0% 0.0% 0.0% 0.0%

Jackson, OH 31,000 4f 0.0% 0.0% 0.0% 0.0%

Dickinson, ND 31,000 4f 0.0% 0.0% 0.0% 0.0%

Lewisburg, TN 31,000 4f 0.0% 0.0% 0.0% 0.0%

Seneca Falls, NY 31,000 4f 0.0% 0.0% 0.0% 0.0%

Las Vegas, NM 31,000 4f 0.0% 0.0% 0.0% 0.0%

Wabash, IN 31,000 4f 0.0% 0.0% 0.0% 0.0%

Cambridge, MD 31,000 4f 0.0% 0.0% 0.0% 0.0%

Kingsville, TX 31,000 4f 0.0% 0.0% 0.0% 0.0%

Paris, TN 31,000 4f 0.0% 0.0% 0.0% 0.0%

Hastings, NE 31,000 4f 0.0% 0.0% 0.0% 0.0%

Macomb, IL 31,000 4f 0.0% 0.0% 0.0% 0.0%

Miami, OK 30,000 4f 0.0% 0.0% 0.0% 0.0%

Madison, IN 30,000 4f 0.0% 0.0% 0.0% 0.0%

Breckenridge, CO 30,000 4f 0.0% 0.0% 0.0% 0.0%

Juneau, AK 30,000 4f 0.0% 0.0% 0.0% 0.0%

Albert Lea, MN 30,000 4f 0.0% 0.0% 0.0% 0.0%

St. Marys, PA 29,000 4f 0.0% 0.0% 0.0% 0.0%

Kennett, MO 29,000 4f 0.0% 0.0% 0.0% 0.0%

Jennings, LA 29,000 4f 0.0% 0.0% 0.0% 0.0%

Kirksville, MO 29,000 4f 0.0% 0.0% 0.0% 0.0%

Hope, AR 29,000 4f 0.0% 0.0% 0.0% 0.0%

Susanville, CA 29,000 4f 0.0% 0.0% 0.0% 0.0%

Iron Mountain, MI-WI 29,000 4f 0.0% 0.0% 0.0% 0.0%

Sheridan, WY 29,000 4f 0.0% 0.0% 0.0% 0.0%

Jesup, GA 29,000 4f 0.0% 0.0% 0.0% 0.0%

Lincoln, IL 29,000 4f 0.0% 0.0% 0.0% 0.0%
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MD
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Union City, TN 29,000 4f 0.0% 0.0% 0.0% 0.0%

Weatherford, OK 29,000 4f 0.0% 0.0% 0.0% 0.0%

Hays, KS 28,000 4f 0.0% 0.0% 0.0% 0.0%

Ludington, MI 28,000 4f 0.0% 0.0% 0.0% 0.0%

Camden, AR 28,000 4f 0.0% 0.0% 0.0% 0.0%

Alpena, MI 28,000 4f 0.0% 0.0% 0.0% 0.0%

Elkins, WV 28,000 4f 0.0% 0.0% 0.0% 0.0%

Central City, KY 28,000 4f 0.0% 0.0% 0.0% 0.0%

McPherson, KS 28,000 4f 0.0% 0.0% 0.0% 0.0%

Washington Court House, OH 28,000 4f 0.0% 0.0% 0.0% 0.0%

Fort Morgan, CO 28,000 4f 0.0% 0.0% 0.0% 0.0%

Van Wert, OH 27,000 4f 0.0% 0.0% 0.0% 0.0%

Mineral Wells, TX 27,000 4f 0.0% 0.0% 0.0% 0.0%

Winchester, VA-WV 27,000 4f 0.0% 0.0% 0.0% 0.0%

Silver City, NM 27,000 4f 0.0% 0.0% 0.0% 0.0%

Crescent City, CA 27,000 4f 0.0% 0.0% 0.0% 0.0%

North Vernon, IN 27,000 4f 0.0% 0.0% 0.0% 0.0%

Eufaula, AL-GA 27,000 4f 0.0% 0.0% 0.0% 0.0%

Middlesborough, KY 26,000 4f 0.0% 0.0% 0.0% 0.0%

Great Bend, KS 26,000 4f 0.0% 0.0% 0.0% 0.0%

Union, SC 26,000 4f 0.0% 0.0% 0.0% 0.0%

Bainbridge, GA 26,000 4f 0.0% 0.0% 0.0% 0.0%

Greensburg, IN 26,000 4f 0.0% 0.0% 0.0% 0.0%

Uvalde, TX 26,000 4f 0.0% 0.0% 0.0% 0.0%

Indianola, MS 26,000 4f 0.0% 0.0% 0.0% 0.0%

Wauchula, FL 25,000 4f 0.0% 0.0% 0.0% 0.0%

La Grande, OR 25,000 4f 0.0% 0.0% 0.0% 0.0%

Thomaston, GA 25,000 4f 0.0% 0.0% 0.0% 0.0%

Marshall, MN 25,000 4f 0.0% 0.0% 0.0% 0.0%

Forrest City, AR 25,000 4f 0.0% 0.0% 0.0% 0.0%

Grants, NM 25,000 4f 0.0% 0.0% 0.0% 0.0%

Lexington, NE 25,000 4f 0.0% 0.0% 0.0% 0.0%

Ottawa, KS 25,000 4f 0.0% 0.0% 0.0% 0.0%

Bennettsville, SC 25,000 4f 0.0% 0.0% 0.0% 0.0%
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MD
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MD
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MD
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Mexico, MO 25,000 4f 0.0% 0.0% 0.0% 0.0%

Fredericksburg, TX 25,000 4f 0.0% 0.0% 0.0% 0.0%

New Ulm, MN 25,000 4f 0.0% 0.0% 0.0% 0.0%

The Dalles, OR 24,000 4f 0.0% 0.0% 0.0% 0.0%

Spearfish, SD 24,000 4f 0.0% 0.0% 0.0% 0.0%

Moberly, MO 24,000 4f 0.0% 0.0% 0.0% 0.0%

Summerville, GA 24,000 4f 0.0% 0.0% 0.0% 0.0%

Woodward, OK 23,000 4f 0.0% 0.0% 0.0% 0.0%

Altus, OK 23,000 4f 0.0% 0.0% 0.0% 0.0%

Magnolia, AR 23,000 4f 0.0% 0.0% 0.0% 0.0%

Toccoa, GA 23,000 4f 0.0% 0.0% 0.0% 0.0%

Deming, NM 23,000 4f 0.0% 0.0% 0.0% 0.0%

Pampa, TX 23,000 4f 0.0% 0.0% 0.0% 0.0%

Scottsburg, IN 23,000 4f 0.0% 0.0% 0.0% 0.0%

Hood River, OR 23,000 4f 0.0% 0.0% 0.0% 0.0%

Mountain Home, ID 23,000 4f 0.0% 0.0% 0.0% 0.0%

Connersville, IN 23,000 4f 0.0% 0.0% 0.0% 0.0%

Hailey, ID 22,000 4f 0.0% 0.0% 0.0% 0.0%

Levelland, TX 22,000 4f 0.0% 0.0% 0.0% 0.0%

Fallon, NV 22,000 4f 0.0% 0.0% 0.0% 0.0%

Cordele, GA 22,000 4f 0.0% 0.0% 0.0% 0.0%

Clarksdale, MS 22,000 4f 0.0% 0.0% 0.0% 0.0%

Maryville, MO 22,000 4f 0.0% 0.0% 0.0% 0.0%

Marshall, MO 22,000 4f 0.0% 0.0% 0.0% 0.0%

Liberal, KS 22,000 4f 0.0% 0.0% 0.0% 0.0%

Mitchell, SD 22,000 4f 0.0% 0.0% 0.0% 0.0%

Wahpeton, ND-MN 22,000 4f 0.0% 0.0% 0.0% 0.0%

Prineville, OR 22,000 4f 0.0% 0.0% 0.0% 0.0%

Elk City, OK 22,000 4f 0.0% 0.0% 0.0% 0.0%

Borger, TX 21,000 4f 0.0% 0.0% 0.0% 0.0%

Oskaloosa, IA 21,000 4f 0.0% 0.0% 0.0% 0.0%

Dumas, TX 21,000 4f 0.0% 0.0% 0.0% 0.0%

Arkadelphia, AR 21,000 4f 0.0% 0.0% 0.0% 0.0%

Raymondville, TX 21,000 4f 0.0% 0.0% 0.0% 0.0%
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Worthington, MN 21,000 4f 0.0% 0.0% 0.0% 0.0%

Port Lavaca, TX 21,000 4f 0.0% 0.0% 0.0% 0.0%

Beatrice, NE 21,000 4f 0.0% 0.0% 0.0% 0.0%

Sterling, CO 21,000 4f 0.0% 0.0% 0.0% 0.0%

Guymon, OK 20,000 4f 0.0% 0.0% 0.0% 0.0%

Jamestown, ND 20,000 4f 0.0% 0.0% 0.0% 0.0%

Grenada, MS 20,000 4f 0.0% 0.0% 0.0% 0.0%

Pierre, SD 20,000 4f 0.0% 0.0% 0.0% 0.0%

Evanston, WY 20,000 4f 0.0% 0.0% 0.0% 0.0%

Parsons, KS 20,000 4f 0.0% 0.0% 0.0% 0.0%

Carroll, IA 20,000 4f 0.0% 0.0% 0.0% 0.0%

Huron, SD 20,000 4f 0.0% 0.0% 0.0% 0.0%

Rockport, TX 20,000 4f 0.0% 0.0% 0.0% 0.0%

Storm Lake, IA 20,000 4f 0.0% 0.0% 0.0% 0.0%

Brookings, OR 19,000 4f 0.0% 0.0% 0.0% 0.0%

Yankton, SD 19,000 4f 0.0% 0.0% 0.0% 0.0%

Fairmont, MN 19,000 4f 0.0% 0.0% 0.0% 0.0%

Price, UT 19,000 4f 0.0% 0.0% 0.0% 0.0%

Othello, WA 19,000 4f 0.0% 0.0% 0.0% 0.0%

Hereford, TX 19,000 4f 0.0% 0.0% 0.0% 0.0%

Ruidoso, NM 18,000 4f 0.0% 0.0% 0.0% 0.0%

Pearsall, TX 18,000 4f 0.0% 0.0% 0.0% 0.0%

Portales, NM 18,000 4f 0.0% 0.0% 0.0% 0.0%

West Point, MS 18,000 4f 0.0% 0.0% 0.0% 0.0%

Fairfield, IA 18,000 4f 0.0% 0.0% 0.0% 0.0%

Vineyard Haven, MA 17,000 4f 0.0% 0.0% 0.0% 0.0%

Brownsville, TN 17,000 4f 0.0% 0.0% 0.0% 0.0%

Helena-West Helena, AR 17,000 4f 0.0% 0.0% 0.0% 0.0%

Fitzgerald, GA 17,000 4f 0.0% 0.0% 0.0% 0.0%

Snyder, TX 17,000 4f 0.0% 0.0% 0.0% 0.0%

Spirit Lake, IA 17,000 4f 0.0% 0.0% 0.0% 0.0%

Andrews, TX 16,000 4f 0.0% 0.0% 0.0% 0.0%

Maysville, KY 16,000 4f 0.0% 0.0% 0.0% 0.0%

Spencer, IA 16,000 4f 0.0% 0.0% 0.0% 0.0%
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Winnemucca, NV 15,000 4f 0.0% 0.0% 0.0% 0.0%

Atchison, KS 15,000 4f 0.0% 0.0% 0.0% 0.0%

Sweetwater, TX 15,000 4f 0.0% 0.0% 0.0% 0.0%

Pecos, TX 14,000 4f 0.0% 0.0% 0.0% 0.0%

Zapata, TX 13,000 4f 0.0% 0.0% 0.0% 0.0%

Vermillion, SD 13,000 4f 0.0% 0.0% 0.0% 0.0%

Craig, CO 13,000 4f 0.0% 0.0% 0.0% 0.0%

Lamesa, TX 13,000 4f 0.0% 0.0% 0.0% 0.0%

Vernon, TX 13,000 4f 0.0% 0.0% 0.0% 0.0%
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Appendix J: Metro Area Typology Neighborhood Maps

This appendix contains maps of the six neighborhood types used to perform the

metro area typology in Chapter 3, along with tables showing the fractions of population

and jobs for each metro area found in those neighborhood types. Neighborhood types are

as described in Table 3.9 on page 3.9

All the maps are at the same scale, and show a 40-mile by 40-mile square, which

means that outlying parts of larger metro areas may be left out, while views of smaller

metro areas may include areas outside the MSA limits. Maps are shown for the twenty

largest metropolitan statistical areas in the US, along with fifteen additional metropolitan

statistical areas that were selected because they are particularly interesting: they are unusu-

ally dense for their size, have rapid transit or light rail, or are representatives of interesting

types from my metro areas typology, discussed in Chapter 3.
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Table J.1: Prevalence of Dense Neighborhood Types in Atlanta

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 50 41,000 0.7% 386,000 16.1%

Medium-Density
Commercial 55 45,000 0.8% 154,000 6.4%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
4 7,000 0.1% 5,000 0.2%

Medium-Density
Residential

(Small Apartments)
0 0 0% 0 0%
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Figure J.1: Atlanta-Sandy Springs-Alpharetta, GAMSAmap of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.2: Prevalence of Dense Neighborhood Types in Austin

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 1,000 0.0% 26,000 3.1%

High-Density
Commercial 9 7,000 0.3% 51,000 6.1%

Medium-Density
Commercial 40 28,000 1.4% 99,000 11.8%

High-Density Residential 1 6,000 0.3% 1,000 0.2%

Medium-Density
Residential

(Large Apartments)
4 14,000 0.7% 2,000 0.2%

Medium-Density
Residential

(Small Apartments)
2 5,000 0.2% 0 0.0%
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Figure J.2: Austin-Round Rock-Georgetown, TX MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.3: Prevalence of Dense Neighborhood Types in Baltimore

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 2,000 0.1% 23,000 2.0%

High-Density
Commercial 24 27,000 1.0% 120,000 10.4%

Medium-Density
Commercial 22 20,000 0.7% 62,000 5.4%

High-Density Residential 5 16,000 0.6% 7,000 0.6%

Medium-Density
Residential

(Large Apartments)
2 4,000 0.1% 3,000 0.3%

Medium-Density
Residential

(Small Apartments)
76 186,000 6.7% 37,000 3.2%
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Figure J.3: Baltimore-Columbia-Towson, MD MSA map of dense neighbor-
hoods used in my metro area typology. The area shown is a 40-mile by 40-
mile square. Roads and water features by Stamen Design used under Creative
Commons CC BY 3.0 license.
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Table J.4: Prevalence of Dense Neighborhood Types in Boston

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 6 20,000 0.4% 190,000 7.8%

High-Density
Commercial 37 75,000 1.6% 299,000 12.4%

Medium-Density
Commercial 41 66,000 1.4% 132,000 5.5%

High-Density Residential 57 280,000 5.8% 103,000 4.3%

Medium-Density
Residential

(Large Apartments)
23 50,000 1.0% 21,000 0.9%

Medium-Density
Residential

(Small Apartments)
247 667,000 13.9% 131,000 5.4%
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Figure J.4: Boston-Cambridge-Newton, MA-NH MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.5: Prevalence of Dense Neighborhood Types in Charlotte

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 2,000 0.1% 28,000 2.6%

High-Density
Commercial 6 5,000 0.2% 52,000 4.8%

Medium-Density
Commercial 22 12,000 0.5% 51,000 4.8%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
0 0 0% 0 0%

Medium-Density
Residential

(Small Apartments)
0 0 0% 0 0%
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Figure J.5: Charlotte-Concord-Gastonia, NC-SC MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.6: Prevalence of Dense Neighborhood Types in Chicago

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 13 65,000 0.7% 513,000 12.5%

High-Density
Commercial 44 46,000 0.5% 218,000 5.3%

Medium-Density
Commercial 73 76,000 0.8% 233,000 5.7%

High-Density Residential 89 463,000 4.9% 119,000 2.9%

Medium-Density
Residential

(Large Apartments)
45 125,000 1.3% 30,000 0.7%

Medium-Density
Residential

(Small Apartments)
474 1,316,000 13.8% 204,000 5.0%
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Figure J.6: Chicago-Naperville-Elgin, IL-IN-WI MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.7: Prevalence of Dense Neighborhood Types in Cleveland

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 9 4,000 0.2% 108,000 11.8%

Medium-Density
Commercial 11 9,000 0.4% 22,000 2.4%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
5 10,000 0.5% 2,000 0.2%

Medium-Density
Residential

(Small Apartments)
9 16,000 0.8% 4,000 0.4%
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Figure J.7: Cleveland-Elyria, OH MSA map of dense neighborhoods used
in my metro area typology. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table J.8: Prevalence of Dense Neighborhood Types in Dallas

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 2,000 0.0% 26,000 0.8%

High-Density
Commercial 54 44,000 0.6% 342,000 10.8%

Medium-Density
Commercial 112 59,000 0.8% 301,000 9.5%

High-Density Residential 1 6,000 0.1% 0 0.0%

Medium-Density
Residential

(Large Apartments)
21 62,000 0.9% 14,000 0.4%

Medium-Density
Residential

(Small Apartments)
7 19,000 0.3% 4,000 0.1%
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Figure J.8: Dallas-Fort Worth-Arlington, TX MSA map of dense neighbor-
hoods used in my metro area typology. Downtown Dallas is at the lower right
and downtown Fort Worth is at the far lower left. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.9: Prevalence of Dense Neighborhood Types in Denver

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 2,000 0.1% 23,000 1.8%

High-Density
Commercial 25 24,000 0.8% 157,000 12.1%

Medium-Density
Commercial 53 46,000 1.6% 129,000 9.9%

High-Density Residential 1 4,000 0.1% 3,000 0.2%

Medium-Density
Residential

(Large Apartments)
24 61,000 2.2% 18,000 1.4%

Medium-Density
Residential

(Small Apartments)
2 4,000 0.1% 1,000 0.1%
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Figure J.9: Denver-Aurora-Lakewood, COMSAmap of dense neighborhoods
used in my metro area typology. Boulder (not in the Denver MSA) is at the
upper left. The area shown is a 40-mile by 40-mile square. Roads and water
features by Stamen Design used under Creative Commons CC BY 3.0 license.
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Table J.10: Prevalence of Dense Neighborhood Types in Detroit

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 21 15,000 0.3% 128,000 7.1%

Medium-Density
Commercial 38 21,000 0.5% 122,000 6.8%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
5 9,000 0.2% 4,000 0.2%

Medium-Density
Residential

(Small Apartments)
13 23,000 0.5% 7,000 0.4%
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Figure J.10: Detroit-Warren-Dearborn, MIMSAmap of dense neighborhoods
used in my metro area typology. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table J.11: Prevalence of Dense Neighborhood Types in Honolulu

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 3,000 0.3% 30,000 8.2%

High-Density
Commercial 9 14,000 1.6% 50,000 13.9%

Medium-Density
Commercial 9 8,000 0.9% 22,000 6.2%

High-Density Residential 19 86,000 9.6% 70,000 19.3%

Medium-Density
Residential

(Large Apartments)
15 45,000 5.0% 14,000 3.9%

Medium-Density
Residential

(Small Apartments)
15 42,000 4.7% 9,000 2.6%
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Figure J.11: Urban Honolulu, HI MSA map of dense neighborhoods used
in my metro area typology. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table J.12: Prevalence of Dense Neighborhood Types in Houston

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 2 1,000 0.0% 77,000 2.9%

High-Density
Commercial 31 23,000 0.3% 206,000 7.9%

Medium-Density
Commercial 91 98,000 1.5% 261,000 10.0%

High-Density Residential 3 15,000 0.2% 1,000 0.0%

Medium-Density
Residential

(Large Apartments)
50 127,000 1.9% 50,000 1.9%

Medium-Density
Residential

(Small Apartments)
5 9,000 0.1% 6,000 0.2%
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Figure J.12: Houston-The Woodlands-Sugar Land, TX MSA map of dense
neighborhoods used in my metro area typology. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.13: Prevalence of Dense Neighborhood Types in Los Angeles

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 5 5,000 0.0% 166,000 3.0%

High-Density
Commercial 95 126,000 0.9% 657,000 11.7%

Medium-Density
Commercial 193 243,000 1.8% 655,000 11.7%

High-Density Residential 115 615,000 4.6% 170,000 3.0%

Medium-Density
Residential

(Large Apartments)
376 1,013,000 7.6% 274,000 4.9%

Medium-Density
Residential

(Small Apartments)
756 2,161,000 16.3% 370,000 6.6%
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Figure J.13: Los Angeles-Long Beach-Anaheim, CA MSA map of dense
neighborhoods used in my metro area typology. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.14: Prevalence of Dense Neighborhood Types in Louisville

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 9 5,000 0.4% 60,000 10.2%

Medium-Density
Commercial 6 5,000 0.4% 19,000 3.3%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
0 0 0% 0 0%

Medium-Density
Residential

(Small Apartments)
1 3,000 0.2% 0 0.1%
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Figure J.14: Louisville-Jefferson County, KY-IN MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.15: Prevalence of Dense Neighborhood Types in Madison, WI

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 3 5,000 0.7% 9,000 2.9%

Medium-Density
Commercial 13 14,000 2.2% 36,000 11.5%

High-Density Residential 3 18,000 2.8% 6,000 1.9%

Medium-Density
Residential

(Large Apartments)
1 1,000 0.1% 0 0.1%

Medium-Density
Residential

(Small Apartments)
1 1,000 0.2% 1,000 0.2%
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Figure J.15: Madison, WI MSA map of dense neighborhoods used in my
metro area typology. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table J.16: Prevalence of Dense Neighborhood Types in Miami

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 2 7,000 0.1% 23,000 1.0%

High-Density
Commercial 38 47,000 0.8% 172,000 7.5%

Medium-Density
Commercial 63 63,000 1.0% 153,000 6.7%

High-Density Residential 23 96,000 1.6% 28,000 1.2%

Medium-Density
Residential

(Large Apartments)
116 301,000 5.0% 66,000 2.9%

Medium-Density
Residential

(Small Apartments)
62 153,000 2.5% 27,000 1.2%
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Figure J.16: Miami-Fort Lauderdale-Pompano Beach, FLMSAmap of dense
neighborhoods used in my metro area typology. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.17: Prevalence of Dense Neighborhood Types in Milwaukee

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 13 10,000 0.6% 86,000 11.0%

Medium-Density
Commercial 14 16,000 1.0% 44,000 5.6%

High-Density Residential 1 3,000 0.2% 8,000 1.0%

Medium-Density
Residential

(Large Apartments)
9 24,000 1.5% 8,000 1.0%

Medium-Density
Residential

(Small Apartments)
70 149,000 9.4% 25,000 3.2%
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Figure J.17: Milwaukee-Waukesha, WI MSA map of dense neighborhoods
used in my metro area typology. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.

645



Table J.18: Prevalence of Dense Neighborhood Types in Minneapolis

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 1,000 0.0% 56,000 3.3%

High-Density
Commercial 25 31,000 0.9% 170,000 10.0%

Medium-Density
Commercial 50 51,000 1.5% 133,000 7.8%

High-Density Residential 2 7,000 0.2% 2,000 0.1%

Medium-Density
Residential

(Large Apartments)
24 63,000 1.8% 21,000 1.2%

Medium-Density
Residential

(Small Apartments)
15 27,000 0.8% 11,000 0.6%
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Figure J.18: Minneapolis-St. Paul-Bloomington, MN-WI MSA map of dense
neighborhoods used in my metro area typology. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.19: Prevalence of Dense Neighborhood Types in New York

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 48 483,000 2.5% 1,959,000 24.4%

High-Density
Commercial 75 141,000 0.7% 403,000 5.0%

Medium-Density
Commercial 67 137,000 0.7% 268,000 3.3%

High-Density Residential 753 6,289,000 32.6% 1,279,000 15.9%

Medium-Density
Residential

(Large Apartments)
182 516,000 2.7% 115,000 1.4%

Medium-Density
Residential

(Small Apartments)
705 2,096,000 10.9% 355,000 4.4%
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Figure J.19: New York-Newark-Jersey City, NY-NJ-PA MSA map of dense
neighborhoods used in my metro area typology. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.20: Prevalence of Dense Neighborhood Types in Philadelphia

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 3 17,000 0.3% 121,000 4.7%

High-Density
Commercial 39 50,000 0.8% 223,000 8.6%

Medium-Density
Commercial 29 26,000 0.4% 99,000 3.8%

High-Density Residential 43 242,000 4.0% 47,000 1.8%

Medium-Density
Residential

(Large Apartments)
4 10,000 0.2% 4,000 0.2%

Medium-Density
Residential

(Small Apartments)
304 919,000 15.2% 138,000 5.4%
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Figure J.20: Philadelphia-Camden-Wilmington, PA-NJ-DE-MD MSA map
of dense neighborhoods used in my metro area typology. Philadelphia is just
right of center and Wilmington is at the lower left. The area shown is a 40-
mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Table J.21: Prevalence of Dense Neighborhood Types in Phoenix

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 30 18,000 0.4% 188,000 10.4%

Medium-Density
Commercial 57 34,000 0.7% 168,000 9.2%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
19 41,000 0.9% 10,000 0.5%

Medium-Density
Residential

(Small Apartments)
12 25,000 0.5% 4,000 0.2%
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Figure J.21: Phoenix-Mesa-Chandler, AZ MSA map of dense neighborhoods
used in my metro area typology. The area shown is a 40-mile by 40-mile
square. Roads andwater features by StamenDesign used under Creative Com-
mons CC BY 3.0 license.
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Table J.22: Prevalence of Dense Neighborhood Types in Pittsburgh

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 2 4,000 0.2% 44,000 4.2%

High-Density
Commercial 13 18,000 0.8% 103,000 9.8%

Medium-Density
Commercial 13 15,000 0.6% 35,000 3.3%

High-Density Residential 1 4,000 0.2% 3,000 0.3%

Medium-Density
Residential

(Large Apartments)
2 4,000 0.2% 1,000 0.1%

Medium-Density
Residential

(Small Apartments)
20 38,000 1.6% 17,000 1.6%
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Figure J.22: Pittsburgh, PA MSA map of dense neighborhoods used in my
metro area typology. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table J.23: Prevalence of Dense Neighborhood Types in Portland

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0.0% 0 0.0%

High-Density
Commercial 13 18,000 0.7% 112,000 10.8%

Medium-Density
Commercial 27 31,000 1.3% 77,000 7.4%

High-Density Residential 2 10,000 0.4% 4,000 0.4%

Medium-Density
Residential

(Large Apartments)
8 16,000 0.7% 7,000 0.7%

Medium-Density
Residential

(Small Apartments)
11 19,000 0.8% 9,000 0.8%
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Figure J.23: Portland-Vancouver-Hillsboro, OR-WA MSA map of dense
neighborhoods used in my metro area typology. The area shown is a 40-mile
by 40-mile square. Roads and water features by Stamen Design used under
Creative Commons CC BY 3.0 license.
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Table J.24: Prevalence of Dense Neighborhood Types in Riverside

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 9 7,000 0.1% 33,000 2.7%

Medium-Density
Commercial 14 9,000 0.2% 34,000 2.8%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
5 11,000 0.2% 3,000 0.2%

Medium-Density
Residential

(Small Apartments)
17 37,000 0.8% 6,000 0.5%
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Figure J.24: Riverside-San Bernardino-Ontario, CA MSA map of dense
neighborhoods used in my metro area typology. Ontario is to the center left,
San Bernardino is to the center right, and Riverside is to the lower center. The
area shown is a 40-mile by 40-mile square. Roads and water features by Sta-
men Design used under Creative Commons CC BY 3.0 license.
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Table J.25: Prevalence of Dense Neighborhood Types in Rochester, MN

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 2 2,000 0.8% 34,000 32.4%

Medium-Density
Commercial 0 0 0% 0 0%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
0 0 0% 0 0%

Medium-Density
Residential

(Small Apartments)
0 0 0% 0 0%
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Figure J.25: Rochester, MN MSA map of dense neighborhoods used in my
metro area typology. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table J.26: Prevalence of Dense Neighborhood Types in Sacramento

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 8 7,000 0.3% 39,000 5.2%

Medium-Density
Commercial 21 13,000 0.6% 60,000 8.1%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
8 15,000 0.7% 5,000 0.7%

Medium-Density
Residential

(Small Apartments)
7 12,000 0.5% 8,000 1.1%
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Figure J.26: Sacramento-Roseville-Folsom, CA MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.27: Prevalence of Dense Neighborhood Types in Salt Lake City

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 8 6,000 0.5% 50,000 8.4%

Medium-Density
Commercial 23 17,000 1.4% 50,000 8.5%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
2 4,000 0.3% 1,000 0.2%

Medium-Density
Residential

(Small Apartments)
0 0 0% 0 0%
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Figure J.27: Salt Lake City, UTMSAmap of dense neighborhoods used in my
metro area typology. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.

665



Table J.28: Prevalence of Dense Neighborhood Types in San Diego

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 20 26,000 0.8% 86,000 7.1%

Medium-Density
Commercial 39 31,000 1.0% 122,000 10.1%

High-Density Residential 4 19,000 0.6% 5,000 0.4%

Medium-Density
Residential

(Large Apartments)
67 162,000 5.1% 40,000 3.3%

Medium-Density
Residential

(Small Apartments)
58 151,000 4.7% 26,000 2.2%
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Figure J.28: San Diego-Chula Vista-Carlsbad, CA MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.29: Prevalence of Dense Neighborhood Types in San Francisco

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 9 57,000 1.2% 298,000 13.9%

High-Density
Commercial 36 74,000 1.6% 221,000 10.3%

Medium-Density
Commercial 74 93,000 2.0% 248,000 11.6%

High-Density Residential 59 325,000 7.0% 119,000 5.5%

Medium-Density
Residential

(Large Apartments)
69 169,000 3.6% 45,000 2.1%

Medium-Density
Residential

(Small Apartments)
228 690,000 14.8% 112,000 5.2%
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Figure J.29: San Francisco-Oakland-Berkeley, CAMSAmap of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.30: Prevalence of Dense Neighborhood Types in San Jose

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 1 1,000 0.1% 25,000 2.5%

High-Density
Commercial 19 15,000 0.8% 124,000 12.4%

Medium-Density
Commercial 42 29,000 1.4% 150,000 15.0%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
53 124,000 6.3% 37,000 3.7%

Medium-Density
Residential

(Small Apartments)
39 96,000 4.9% 18,000 1.8%
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Figure J.30: San Jose-Sunnyvale-Santa Clara, CA MSA map of dense neigh-
borhoods used in my metro area typology. The area shown is a 40-mile by
40-mile square. Roads and water features by Stamen Design used under Cre-
ative Commons CC BY 3.0 license.
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Table J.31: Prevalence of Dense Neighborhood Types in Seattle

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 3 9,000 0.2% 123,000 7.2%

High-Density
Commercial 28 42,000 1.1% 186,000 11.0%

Medium-Density
Commercial 48 57,000 1.5% 175,000 10.3%

High-Density Residential 10 50,000 1.3% 25,000 1.5%

Medium-Density
Residential

(Large Apartments)
43 101,000 2.7% 40,000 2.3%

Medium-Density
Residential

(Small Apartments)
18 39,000 1.0% 16,000 1.0%
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Figure J.31: Seattle-Tacoma-Bellevue, WA MSA map of dense neighbor-
hoods used in my metro area typology. Seattle is in the upper center and
Tacoma is to the lower left. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table J.32: Prevalence of Dense Neighborhood Types in St. Louis

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 19 17,000 0.6% 126,000 10.3%

Medium-Density
Commercial 15 10,000 0.4% 47,000 3.8%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
1 2,000 0.1% 1,000 0.1%

Medium-Density
Residential

(Small Apartments)
23 44,000 1.6% 8,000 0.6%
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Figure J.32: St. Louis, MO-IL MSA map of dense neighborhoods used in my
metro area typology. The area shown is a 40-mile by 40-mile square. Roads
and water features by Stamen Design used under Creative Commons CC BY
3.0 license.
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Table J.33: Prevalence of Dense Neighborhood Types in Tampa

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 24 13,000 0.4% 97,000 8.1%

Medium-Density
Commercial 28 18,000 0.6% 76,000 6.3%

High-Density Residential 0 0 0% 0 0%

Medium-Density
Residential

(Large Apartments)
7 12,000 0.4% 2,000 0.2%

Medium-Density
Residential

(Small Apartments)
1 1,000 0.0% 1,000 0.1%
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Figure J.33: Tampa-St. Petersburg-Clearwater, FL MSA map of dense neigh-
borhoods used in my metro area typology. Tampa is to the upper right and St.
Petersburg is to the lower left. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table J.34: Prevalence of Dense Neighborhood Types in Urbana-Champaign, IL

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 0 0 0% 0 0%

High-Density
Commercial 1 1,000 0.3% 7,000 9.8%

Medium-Density
Commercial 1 0 0.2% 3,000 3.8%

High-Density Residential 1 7,000 3.1% 1,000 2.0%

Medium-Density
Residential

(Large Apartments)
4 11,000 4.8% 2,000 3.6%

Medium-Density
Residential

(Small Apartments)
0 0 0% 0 0%
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Figure J.34: Champaign-Urbana, IL MSA map of dense neighborhoods used
in my metro area typology. The area shown is a 40-mile by 40-mile square.
Roads and water features by Stamen Design used under Creative Commons
CC BY 3.0 license.
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Table J.35: Prevalence of Dense Neighborhood Types in Washington

Neighborhood Type # Hexes Pop. % Pop. Jobs % Jobs

Central Business District 7 18,000 0.3% 223,000 8.2%

High-Density
Commercial 63 95,000 1.6% 480,000 17.6%

Medium-Density
Commercial 108 136,000 2.2% 317,000 11.7%

High-Density Residential 30 163,000 2.7% 59,000 2.2%

Medium-Density
Residential

(Large Apartments)
60 173,000 2.8% 41,000 1.5%

Medium-Density
Residential

(Small Apartments)
71 188,000 3.1% 41,000 1.5%
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Figure J.35: Washington-Arlington-Alexandria DC-VA-MD-WV MSA map
of dense neighborhoods used in my metro area typology. The area shown is a
40-mile by 40-mile square. Roads and water features by Stamen Design used
under Creative Commons CC BY 3.0 license.
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Appendix K: Median Job and Population Density Tables

This appendix contains four tables of the median activity densities experienced by

different groups for each of the 60 largest US metro areas. These tables were were pro-

duced as part of the analyses in Sections 3.3.3 and Sections 4.4.5.

Table K.1 on page 683 shows the median activity densities of residents—in other

words, the activity density of the hex where themedian resident lives for eachmetro area—

along with the ratios between the median activity densities of non-Hispanic white, non-

Hispanic Black, Latin of any race, non-Hispanic Asian, and non-Hispanic of some other

race residents and the median activity density of all residents for each metro area.

Table K.2 on page 686 shows the median activity densities of jobs—in other words,

the activity density of the hex where the median job is located for each metro area—along

with the ratios between the median activity densities of low-income (earning less than

$1,250 per month), middle-income (earning $1,251–$3,333 per month), and high-income

(earning more than $3,333 per month) jobs and the median activity density of all jobs for

each metro area.

Table K.3 on page 689 shows the percentage of workers who commute by transit, the

median activity densities of workers—in other words, the activity density of the hex where

the median worker lives for each metro area—along with the median activity densities
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of workers who commute by transit and the ratio between the median activity densities

of workers commuting by transit and the median activity density of all workers for each

metro area.

Table K.3 on page 692 shows the percentage of carfree households, the median ac-

tivity densities of households—in other words, the activity density of the hex where the

median household is located for each metro area—along with the median activity densi-

ties of carfree households and the ratio between the median activity densities of carfree

households and all households for each metro area.

Table K.1: Median Density of Residents by Race in Large Metros

Metro Area

Median
Activity
Density of
Residents
( / sq. mi.)

White
Median

/
Overall
Median

Black
Median

/
Overall
Median

Latin
Median

/
Overall
Median

Asian
Median

/
Overall
Median

Other
Median

/
Overall
Median

Albuquerque 4,900 97% 121% 101% 107% 91%

Atlanta 2,600 78% 114% 139% 140% 107%

Austin 4,100 91% 114% 110% 112% 102%

Baltimore 5,300 74% 166% 123% 95% 102%

Birmingham 1,700 73% 151% 111% 137% 105%

Boston 5,300 68% 311% 324% 202% 144%

Bridgeport 4,500 58% 237% 235% 120% 131%

Buffalo 4,500 79% 189% 173% 150% 124%

Charlotte 2,200 78% 133% 139% 146% 114%

Chicago 6,500 76% 138% 155% 114% 104%

Cincinnati 3,000 87% 184% 136% 116% 128%

Cleveland 4,000 80% 160% 148% 110% 131%

Columbus 4,100 84% 143% 139% 133% 125%

Dallas 5,100 83% 107% 119% 111% 102%

Denver 6,300 91% 132% 122% 104% 104%

Continued on next page
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Table K.1 – Continued from previous page

Metro Area

Median
Activity
Density of
Residents
( / sq. mi.)

White
Median

/
Overall
Median

Black
Median

/
Overall
Median

Latin
Median

/
Overall
Median

Asian
Median

/
Overall
Median

Other
Median

/
Overall
Median

Detroit 4,500 86% 133% 118% 99% 110%

Fresno 5,900 91% 128% 104% 101% 97%

Grand Rapids 2,500 80% 251% 222% 140% 153%

Hartford 2,600 74% 221% 268% 115% 126%

Honolulu 9,900 81% 100% 97% 116% 89%

Houston 4,900 80% 107% 118% 106% 96%

Indianapolis 2,900 88% 150% 147% 101% 113%

Jacksonville 3,000 87% 125% 121% 120% 100%

Kansas City 3,200 91% 117% 128% 131% 104%

Las Vegas 8,000 90% 109% 115% 97% 100%

Los Angeles 13,000 77% 113% 116% 92% 89%

Louisville 3,500 85% 153% 123% 130% 114%

Memphis 3,100 73% 119% 138% 91% 92%

Miami 8,200 77% 105% 117% 88% 91%

Milwaukee 5,200 65% 177% 190% 114% 136%

Minneapolis 3,700 87% 194% 156% 143% 129%

Nashville 2,200 79% 166% 169% 143% 130%

New Orleans 5,800 84% 110% 122% 107% 94%

New York 17,700 44% 174% 186% 142% 143%

Oklahoma City 3,500 84% 117% 142% 116% 97%

Omaha 4,400 90% 117% 131% 126% 111%

Orlando 3,800 87% 129% 109% 97% 106%

Philadelphia 5,400 73% 262% 195% 114% 113%

Phoenix 5,600 87% 118% 127% 99% 104%

Pittsburgh 2,600 87% 219% 151% 198% 155%

Portland 5,900 94% 139% 122% 118% 110%

Providence 4,200 72% 259% 301% 142% 190%

Continued on next page
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Table K.1 – Continued from previous page

Metro Area

Median
Activity
Density of
Residents
( / sq. mi.)

White
Median

/
Overall
Median

Black
Median

/
Overall
Median

Latin
Median

/
Overall
Median

Asian
Median

/
Overall
Median

Other
Median

/
Overall
Median

Raleigh 2,700 89% 116% 94% 145% 104%

Richmond 2,800 84% 120% 120% 131% 103%

Riverside 5,300 74% 113% 117% 102% 94%

Rochester 2,600 81% 347% 281% 134% 144%

Sacramento 6,200 85% 130% 117% 115% 111%

Salt Lake City 6,300 95% 125% 118% 110% 112%

San Antonio 4,900 73% 104% 114% 106% 91%

San Diego 8,200 79% 121% 123% 105% 93%

San Francisco 11,100 77% 118% 115% 115% 98%

San Jose 10,800 85% 112% 112% 103% 100%

Seattle 5,500 91% 127% 115% 113% 106%

St. Louis 3,300 86% 147% 117% 133% 118%

Tampa 4,400 93% 126% 110% 102% 105%

Tucson 3,800 81% 132% 123% 115% 90%

Tulsa 2,600 87% 133% 172% 161% 71%

Virginia Beach 4,400 86% 120% 121% 119% 109%

Washington 5,900 81% 117% 141% 104% 95%

Worcester 1,900 78% 324% 347% 156% 138%

685



Table K.2: Median Density of Jobs by Income in Large Metros

Metro Area

Median
Activity
Density of

Jobs
( / sq. mi.)

Low-Income
Median /
Overall
Median

Middle-Income
Median /

Overall Median

High-Income
Median /
Overall
Median

Albuquerque 7,500 100% 99% 102%

Atlanta 6,900 83% 85% 129%

Austin 8,600 93% 92% 111%

Baltimore 8,400 93% 95% 108%

Birmingham 4,600 94% 94% 115%

Boston 12,200 80% 82% 122%

Bridgeport 8,600 90% 91% 116%

Buffalo 6,500 97% 96% 106%

Charlotte 5,000 95% 90% 118%

Chicago 10,500 91% 92% 113%

Cincinnati 6,100 95% 94% 107%

Cleveland 6,200 96% 94% 106%

Columbus 7,100 99% 96% 104%

Dallas 9,000 89% 89% 121%

Denver 10,000 95% 93% 109%

Detroit 7,100 91% 94% 112%

Fresno 8,000 103% 98% 99%

Grand Rapids 6,300 108% 94% 97%

Hartford 5,400 86% 87% 116%

Honolulu 23,700 97% 97% 109%

Houston 9,000 96% 93% 109%

Indianapolis 6,600 93% 92% 111%

Jacksonville 6,200 90% 92% 115%

Kansas City 6,000 93% 93% 116%

Las Vegas 11,400 92% 102% 105%

Los Angeles 17,000 105% 92% 105%

Louisville 6,500 96% 95% 107%

Continued on next page
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Table K.2 – Continued from previous page

Metro Area

Median
Activity
Density of

Jobs
( / sq. mi.)

Low-Income
Median /
Overall
Median

Middle-Income
Median /

Overall Median

High-Income
Median /
Overall
Median

Memphis 5,700 100% 92% 107%

Miami 11,000 96% 97% 106%

Milwaukee 7,300 100% 96% 103%

Minneapolis 8,200 89% 90% 112%

Nashville 6,800 84% 87% 127%

New Orleans 8,900 100% 100% 100%

New York 25,900 79% 84% 142%

Oklahoma City 5,400 100% 98% 101%

Omaha 7,200 93% 96% 111%

Orlando 8,100 96% 93% 112%

Philadelphia 8,000 93% 94% 107%

Phoenix 9,900 90% 93% 112%

Pittsburgh 6,000 88% 92% 113%

Portland 9,800 95% 93% 111%

Providence 6,300 95% 98% 103%

Raleigh 6,000 92% 89% 114%

Richmond 6,000 92% 91% 118%

Riverside 7,100 103% 100% 99%

Rochester 6,000 97% 95% 111%

Sacramento 8,000 99% 95% 107%

Salt Lake City 8,800 99% 98% 101%

San Antonio 8,000 100% 94% 104%

San Diego 11,800 98% 95% 104%

San Francisco 19,600 85% 80% 119%

San Jose 15,700 85% 85% 113%

Seattle 12,500 81% 81% 134%

St. Louis 6,500 89% 94% 119%

Continued on next page
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Table K.2 – Continued from previous page

Metro Area

Median
Activity
Density of

Jobs
( / sq. mi.)

Low-Income
Median /
Overall
Median

Middle-Income
Median /

Overall Median

High-Income
Median /
Overall
Median

Tampa 7,500 90% 93% 119%

Tucson 6,800 98% 97% 107%

Tulsa 5,400 100% 98% 102%

Virginia Beach 7,500 93% 95% 113%

Washington 15,200 70% 73% 138%

Worcester 4,400 92% 95% 109%
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Table K.3: Median Density of Transit Commuters in Large Metros

Metro Area

% of
Workers
Who

Commute
by Transit

Median
Activity
Density of
Workers
( / sq. mi.)

Median
Activity
Density of
Transit

Commuters
( / sq. mi.)

Transit
Commuter
Median /
Overall
Median

New York 31.9% 17,000 55,200 320%

San Francisco 17.1% 11,800 20,000 170%

Washington 13.6% 6,200 11,700 190%

Boston 13.3% 5,500 18,200 330%

Chicago 12.1% 6,500 17,500 270%

Bridgeport 10.0% 4,800 5,300 110%

Seattle 9.9% 5,800 9,400 160%

Philadelphia 9.5% 5,100 16,100 320%

Honolulu 9.0% 10,400 16,100 160%

Portland 6.5% 6,100 9,200 150%

Baltimore 6.4% 5,200 10,300 200%

Pittsburgh 5.7% 2,600 6,800 260%

Los Angeles 5.1% 13,100 20,500 160%

Minneapolis 4.7% 3,700 7,400 200%

San Jose 4.2% 11,100 13,100 120%

Denver 4.2% 6,400 8,200 130%

Las Vegas 3.8% 8,000 10,600 130%

Salt Lake City 3.7% 6,400 7,800 120%

Miami 3.5% 8,300 11,100 130%

Milwaukee 3.3% 4,800 10,000 210%

Buffalo 3.3% 4,400 9,100 210%

Atlanta 3.1% 2,700 4,500 170%

Cleveland 3.0% 3,800 6,900 180%

San Diego 2.9% 8,400 12,500 150%

New Orleans 2.8% 5,900 8,300 140%

Hartford 2.8% 2,500 7,000 280%

Continued on next page
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Table K.3 – Continued from previous page

Metro Area

% of
Workers
Who

Commute
by Transit

Median
Activity
Density of
Workers
( / sq. mi.)

Median
Activity
Density of
Transit

Commuters
( / sq. mi.)

Transit
Commuter
Median /
Overall
Median

Providence 2.6% 3,800 7,000 180%

Tucson 2.5% 4,000 6,900 170%

St. Louis 2.5% 3,400 5,700 170%

Sacramento 2.4% 6,300 7,300 120%

Rochester 2.3% 2,600 9,200 360%

Austin 2.2% 4,400 7,700 170%

Houston 2.1% 5,100 7,000 140%

San Antonio 2.0% 5,000 6,800 140%

Phoenix 2.0% 5,800 8,900 150%

Louisville 1.9% 3,500 6,600 190%

Cincinnati 1.9% 3,000 6,000 200%

Orlando 1.8% 3,900 6,200 160%

Columbus 1.7% 4,200 7,100 170%

Albuquerque 1.6% 5,000 6,700 130%

Worcester 1.6% 1,700 3,300 190%

Charlotte 1.6% 2,300 4,400 190%

Richmond 1.6% 2,800 4,900 180%

Grand Rapids 1.5% 2,500 6,500 260%

Virginia Beach 1.5% 4,500 6,400 140%

Dallas 1.4% 5,200 6,900 130%

Riverside 1.4% 5,500 7,100 130%

Detroit 1.4% 4,400 5,900 140%

Tampa 1.4% 4,500 6,400 140%

Jacksonville 1.2% 3,100 4,600 150%

Fresno 1.2% 5,900 8,300 140%

Nashville 1.1% 2,300 4,200 180%

Kansas City 1.0% 3,300 4,700 140%

Continued on next page
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Table K.3 – Continued from previous page

Metro Area

% of
Workers
Who

Commute
by Transit

Median
Activity
Density of
Workers
( / sq. mi.)

Median
Activity
Density of
Transit

Commuters
( / sq. mi.)

Transit
Commuter
Median /
Overall
Median

Indianapolis 1.0% 2,900 5,200 180%

Raleigh .9% 2,900 4,800 170%

Memphis .9% 3,100 4,400 140%

Omaha .9% 4,500 5,700 130%

Birmingham .6% 1,800 3,300 180%

Tulsa .5% 2,700 4,600 170%

Oklahoma City .4% 3,600 4,600 130%
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Table K.4: Median Density of Carfree Households in LargeMetros

Metro Area % Carfree
Households

Median
Activity
Density of
Households
( / sq. mi.)

Median
Activity
Density of
Carfree

Households
( / sq. mi.)

Carfree
Household
Median /
Overall
Median

New York 30.7% 19,200 67,800 350%

Boston 13.1% 5,600 21,500 390%

Philadelphia 13.0% 5,500 17,600 320%

Buffalo 12.6% 4,600 7,100 150%

San Francisco 12.2% 11,500 29,800 260%

Chicago 12.0% 6,700 16,000 240%

Baltimore 10.9% 5,500 11,300 210%

Pittsburgh 10.6% 2,700 5,600 200%

Cleveland 10.5% 4,200 6,400 150%

New Orleans 10.3% 5,900 7,600 130%

Rochester 10.3% 2,700 6,100 220%

Honolulu 10.2% 10,700 26,100 240%

Providence 10.0% 4,300 10,300 240%

Milwaukee 9.8% 5,100 9,000 170%

Washington 9.7% 6,400 16,200 260%

Hartford 9.1% 2,600 7,100 270%

Worcester 9.0% 1,900 6,000 320%

Detroit 8.9% 4,600 5,700 130%

Fresno 8.5% 6,100 8,000 130%

Tucson 8.4% 3,800 6,400 170%

Las Vegas 8.4% 8,000 10,300 130%

Miami 8.2% 8,300 10,700 130%

Seattle 8.1% 5,800 11,200 190%

Los Angeles 7.9% 13,000 19,400 150%

Portland 7.9% 6,100 9,200 150%

Cincinnati 7.8% 3,100 5,400 170%

Continued on next page
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Metro Area % Carfree
Households

Median
Activity
Density of
Households
( / sq. mi.)

Median
Activity
Density of
Carfree

Households
( / sq. mi.)

Carfree
Household
Median /
Overall
Median

Memphis 7.8% 3,200 3,900 120%

St. Louis 7.7% 3,500 4,800 140%

Bridgeport 7.7% 4,600 11,500 250%

Louisville 7.7% 3,700 5,600 150%

Minneapolis 7.2% 3,800 8,000 210%

Richmond 7.0% 2,800 4,600 160%

Tampa 6.9% 4,500 5,900 130%

Virginia Beach 6.8% 4,400 5,700 130%

Columbus 6.5% 4,200 5,800 140%

San Antonio 6.5% 5,000 6,500 130%

Indianapolis 6.3% 3,000 4,600 150%

Sacramento 6.3% 6,200 7,900 130%

Jacksonville 6.3% 3,200 4,400 140%

Grand Rapids 6.2% 2,500 4,700 190%

Birmingham 6.1% 1,800 2,700 150%

Kansas City 6.1% 3,300 4,100 120%

Phoenix 6.0% 5,600 8,100 150%

Omaha 6.0% 4,500 5,600 120%

Atlanta 5.9% 2,700 4,000 150%

Tulsa 5.9% 2,700 3,800 140%

Albuquerque 5.8% 5,000 6,700 130%

Denver 5.7% 6,500 9,300 140%

San Diego 5.5% 8,300 12,500 150%

Orlando 5.4% 3,900 4,900 130%

Houston 5.2% 5,100 6,600 130%

Salt Lake City 5.2% 6,600 8,300 130%

San Jose 5.1% 10,800 13,200 120%

Continued on next page
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Metro Area % Carfree
Households

Median
Activity
Density of
Households
( / sq. mi.)

Median
Activity
Density of
Carfree

Households
( / sq. mi.)

Carfree
Household
Median /
Overall
Median

Charlotte 5.1% 2,300 3,100 130%

Oklahoma City 5.0% 3,600 4,500 120%

Dallas 4.8% 5,200 6,300 120%

Nashville 4.7% 2,300 3,800 170%

Riverside 4.7% 5,000 5,900 120%

Austin 4.4% 4,400 6,800 160%

Raleigh 4.1% 2,900 3,700 130%
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Appendix L: Transit and Dense Neighborhood Maps

This appendix contains maps of rapid transit, light rail, and some bus rapid transit

lines in fourteen of the sixteen major metropolitan areas with the highest transit commute

shares in the US (see Table 4.2 on page 232), as discussed in Section 4.4.1. Honolulu and

Madison, Wisconsin are not shown because they currently have no rail transit, although a

rapid transit line is currently under construction in Honolulu. All the maps are at the same

scale, and show a 30-mile by 30-mile square, which means that outlying parts of larger

metro areas may be left out.

The colored hexes represent the six high- and medium-density neighborhood types

shown in the maps in J and described in Table 3.9 on page 149. In general, neighborhoods

are shown if they have a density of roughly 15,000 activity units per square mile. The

roads and water features shown are by Stamen Design and used under Creative Commons

CC BY 3.0 license.
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Figure L.1: Rapid transit and light rail in the Baltimore metro area. The Bal-
timore Metro Subway is shown with a thick line; the Baltimore Light Rail is
shown with thin lines. The area shown is a 30-mile by 30-mile square.
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Figure L.2: Rapid transit, light rail, and bus rapid transit in the Boston metro
area. The Red, Orange, and Blue Lines are shown with thick lines; the Green
Line andMattapan High-Speed Line are shown with thin lines, and the under-
ground portion of the Silver Line are shown with thin lines. The Silver Line
is shown with brown lines. The area shown is a 30-mile by 30-mile square.
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Figure L.3: Rapid transit in the Chicagometro area. The Chicago ’L’ is shown
with thick lines. The area shown is a 30-mile by 30-mile square.
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Figure L.4: Light rail and frequent commuter rail in the Denver metro area.
The Denver light rail and commuter rail lines are shown with thin lines. Den-
ver’s commuter rail, uniquely in the US, operates with the same fares, head-
ways and hours of operation as its light rail. The area shown is a 30-mile by
30-mile square.
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Figure L.5: Rapid transit, light rail, and bus rapid transit in the Los Angeles
metro area. The Red and Purple Lines are shown with thick lines; the Blue,
Expo, and Gold Lines are shown with thin lines. The Orange and Silver Lines
are shown with brown lines. The area shown is a 30-mile by 30-mile square.
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Figure L.6: Light rail and bus rapid transit in the Minneapolis metro area.
The Blue and Green Lines are shown with thin lines. The Red Line and the
University ofMinnesota Busway are shown with brown lines. The area shown
is a 30-mile by 30-mile square.
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Figure L.7: Rapid transit and light rail in the New York metro area. The New
York City Subway, Staten Island Rapid Transit, and PATH are shown with
thick lines; the Hudson-Bergen Light Rail and Newark Light Rail are shown
with thin lines. The area shown is a 30-mile by 30-mile square.
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Figure L.8: Rapid transit, light rail, and streetcars in the Philadelphia metro
area. The Market-Frankford Line, Broad Street Subway, PATCO Speedline,
and Norristown High-Speed Line are shown with thick lines; SEPTA and
New Jersey Transit light rail lines are shown with thin lines. Surface stops
on SEPTA light rail lines are closely spaced and not shown. The area shown
is a 30-mile by 30-mile square.
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Figure L.9: Light rail and bus rapid transit in the Pittsburgh metro area. Light
Rail lines are shown with thin lines; the West, South, and East Busways are
shown with brown lines. Note that all busways connect downtown via street
running. The area shown is a 30-mile by 30-mile square.
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Figure L.10: Light rail and streetcars in the Portland metro area. The MAX
Light Rail is shown with thick lines; the Portland Streetcar is shown with thin
lines. Stops on the streetcar are closely spaced and not shown. The area shown
is a 30-mile by 30-mile square.
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Figure L.11: Rapid transit, light rail, and bus rapid transit in the San Francisco
metro area. BART is shown shown with thick lines; the San Francisco Muni
Metro, streetcars, and cable cars are shown with thin lines. The Tempo BRT
line is shown with a brown line. Surface stops on light rail are closely spaced
and not shown. The area shown is a 30-mile by 30-mile square.
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Figure L.12: Rapid transit and light rail in the San Jose metro area. BART is
shown with thick lines; the VTA Light Rail is shown with thin lines. The area
shown is a 30-mile by 30-mile square.
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Figure L.13: Rapid transit and light rail in the Seattle metro area. The Seattle
Center Monorail is shown with a thick line. Seattle Link light rail is shown
with a medium line. The South Lake Union Streetcar and First Hill Streetcar
are shown with thin lines. Streetcar stops are closely spaced and not shown.
The area shown is a 30-mile by 30-mile square.
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Figure L.14: Rapid transit, streetcar, and bus rapid transit in the Washing-
ton metro area. WMATA Metrorail lines are shown with thick lines; the DC
Streetcar is shown with a thin line; the Metroway BRT line is shown with a
brown line. Streetcar stops are closely spaced and not shown. The area shown
is a 30-mile by 30-mile square.
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